18.已知一個幾何體的三視圖如右圖所示(單位:cm),則該幾何體的體積為( 。
A.12cm3B.16cm3C.18cm3D.20cm3

分析 根據(jù)幾何體的三視圖知該幾何體是直三棱柱,切去一個三棱錐,
畫出幾何體的直觀圖,結(jié)合圖中數(shù)據(jù)求出它的體積.

解答 解:根據(jù)幾何體的三視圖知,該幾何體是直三棱柱,
切去一個三棱錐,如圖所示;

該幾何體的體積為V=$\frac{1}{2}$×3×4×4-$\frac{1}{3}$×$\frac{1}{2}$×2×3×4=20cm3
故選:D.

點評 本題考查了利用三視圖求幾何體體積的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知直線x+y-5=0與兩坐標軸圍成的區(qū)域為M,不等式組$\left\{\begin{array}{l}y≤5-x\\ x≥0\\ y≥3x\end{array}\right.$所形成的區(qū)域為N,現(xiàn)在區(qū)域M中隨機放置一點,則該點落在區(qū)域N的概率是(  )
A.$\frac{3}{4}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)$f(x)=\left\{\begin{array}{l}2{e^{x-1}},x<2\\{log_3}({x^2}-1),x≥2\end{array}\right.$則f(f(1))=1,不等式f(x)>2的解集為$(1,2)∪(\sqrt{10},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.我們把三個集合中,通過兩次連線后能夠有關(guān)系的兩個數(shù)字的關(guān)系稱為”鼠標關(guān)系”,如圖1,可稱a與q,b與q,c與q都為”鼠標關(guān)系”集合A={a,b,c,d},通過集合 B={1,2,3} 與集合C={m,n}最多能夠產(chǎn)生24條”鼠標關(guān)系”,(只要有一條連線不同則”鼠標關(guān)系”不同)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若M={x|-2≤x≤2},N={x|y=log2(x-1)},則M∩N=( 。
A.{x|-2≤x<0}B.{x|-1<x<0}C.{-2,0}D.{x|1<x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在復(fù)平面內(nèi),復(fù)數(shù)$\frac{2-i}{1-i}$(i是虛數(shù)單位)對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)等差數(shù)列{an}的前n項和為Sn,若2a3=3+a1,則S9的值為( 。
A.15B.27C.30D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一個幾何體的三視圖如圖所示,則此幾何體的體積為(  )
A.16B.36C.48D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知{an}是公差為d的等差數(shù)列,它的前n項和為Sn,S4=2S2+8.
(I)求公差d的值;
(II )若a1=1,設(shè)Tn是數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項和,求使不等式Tn≥$\frac{1}{18}$(m2-5m)對所有的n∈N*恒成立的最大正整數(shù)m的值;
(III)設(shè)bn=$\frac{2+{a}_{n}}{{a}_{n}}$,若對任意的n∈N*,都有bn≤b4成立,求a1的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案