【題目】已知正方形,分別是的中點(diǎn),將沿折起,如圖所示,記二面角的大小為
(1)證明:
(2)若為正三角形,試判斷點(diǎn)在平面內(nèi)的身影是否在直線上,證明你的結(jié)論,并求角的正弦值.
【答案】(1)見(jiàn)證明;(2)
【解析】
(1)沿折起,其它邊不變,可知且,則有四邊形為平行四邊形,那么,又由于,,故;(2)解法一:過(guò)點(diǎn)A作,垂足為G,連接,由于,則有,故點(diǎn)A在CD的中垂線EF上,過(guò)點(diǎn)作,垂足為,連接,由已知得,故,則即是,設(shè)原正方形的邊長(zhǎng)為,根據(jù)已知邊和角的關(guān)系可以求得;方法三:點(diǎn)在平面內(nèi)的射影在直線上證法同法一,建立空間直角坐標(biāo)系,先求平面CED的法向量,再求平面ADE的法向量,可得二面角的余弦值,進(jìn)而得到.
解:(1)證明:分別是正方形的邊的中點(diǎn),
∴且,則四邊形為平行四邊形,
∴.
又,而,
∴
(2)解法一:過(guò)點(diǎn)作,垂足為,連接.
∵為正三角形,,∴,
∴在垂直平分線上,又∵是的垂直平分線,
∴點(diǎn)在平面內(nèi)的射影在直線上
過(guò)點(diǎn)作,垂足為,連接,則,∴是二面角的平面角,即.
設(shè)原正方形的邊長(zhǎng)為,連接,在折后圖的中,,
∴為直角三角形,,∴.
在中,,∴,則,即.
解法二:點(diǎn)在平面內(nèi)的射影在直線上,連接,在平面內(nèi)過(guò)點(diǎn)作,垂足為
∵為正三角形,為的中點(diǎn),
∴.
又∵,∴.
∵,∴
又∵且,
∴
∴為在平面內(nèi)的射影,
∴點(diǎn)在平面內(nèi)的射影在直線上
過(guò)點(diǎn)作,垂足為,連接,則,∴是二面角的平面角,即.
設(shè)原正方形的邊長(zhǎng)為,連接,在折后圖的中,,
∴為直角三角形,,∴.
在中,,∴,則,即.
解法三:(同解法一)
點(diǎn)在平面內(nèi)的射影在直線上,
如圖,連接,以點(diǎn)為坐標(biāo)原點(diǎn),為軸,為軸,過(guò)點(diǎn)作平行于的向量為軸建立如圖所示的空間直角坐標(biāo)系.
設(shè)正方形的邊長(zhǎng)為,連接,.所以,,,,.
又平面的一個(gè)法向量為,設(shè)平面的一個(gè)法向量為.
則,即,所以
所以,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某普通高中為了解本校高三年級(jí)學(xué)生數(shù)學(xué)學(xué)習(xí)情況,對(duì)一模考試數(shù)學(xué)成績(jī)進(jìn)行分析,從中抽取了名學(xué)生的成績(jī)作為樣本進(jìn)行統(tǒng)計(jì)(該校全體學(xué)生的成績(jī)均在),按下列分組,,,,,,,,作出頻率分布直方圖,如圖;樣本中分?jǐn)?shù)在內(nèi)的所有數(shù)據(jù)的莖葉圖如圖:
根據(jù)往年錄取數(shù)據(jù)劃出預(yù)錄分?jǐn)?shù)線,分?jǐn)?shù)區(qū)間與可能被錄取院校層次如表.
(1)求的值及頻率分布直方圖中的值;
(2)根據(jù)樣本估計(jì)總體的思想,以事件發(fā)生的頻率作為概率,若在該校高三年級(jí)學(xué)生中任取人,求此人都不能錄取為?频母怕;
(3)在選取的樣本中,從可能錄取為自招和?苾蓚(gè)層次的學(xué)生中隨機(jī)抽取名學(xué)生進(jìn)行調(diào)研,用表示所抽取的名學(xué)生中為自招的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某教研機(jī)構(gòu)隨機(jī)抽取某校20個(gè)班級(jí),調(diào)查各班關(guān)注漢字聽(tīng)寫(xiě)大賽的學(xué)生人數(shù),根據(jù)所得數(shù)據(jù)的莖葉圖,以組距為5將數(shù)據(jù)分組成時(shí),所作的頻率分布直方圖如圖所示,則原始莖葉圖可能是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是拋物線的準(zhǔn)線上一點(diǎn),F為拋物線的焦點(diǎn),P為拋物線上的點(diǎn),且,若雙曲線C中心在原點(diǎn),F是它的一個(gè)焦點(diǎn),且過(guò)P點(diǎn),當(dāng)m取最小值時(shí),雙曲線C的離心率為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為.
(1)求曲線與直線的直角坐標(biāo)方程.
(2)直線與軸的交點(diǎn)為,與曲線的交點(diǎn)為,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩人進(jìn)行乒乓球比賽,兩人打到平,之后的比賽要每球交替發(fā)球權(quán)且要一人凈勝兩球才能取勝,已知甲發(fā)球甲獲勝的概率為,乙發(fā)球甲獲勝的概率為,則下列命題正確的個(gè)數(shù)為( )
(1)若,兩人能在兩球后結(jié)束比賽的概率與有關(guān)
(2)若,兩人能在兩球后結(jié)束比賽的概率與有關(guān)
(3)第二球分出勝負(fù)的概率與在第二球沒(méi)有分出勝負(fù)的情況下進(jìn)而第四球分出勝負(fù)的概率相同
(4)第二球分出勝負(fù)的概率與在第球沒(méi)有分出勝負(fù)的情況下進(jìn)而第球分出勝負(fù)的概率相同
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是拋物線的焦點(diǎn),點(diǎn)在軸上,為坐標(biāo)原點(diǎn),且滿足,經(jīng)過(guò)點(diǎn)且垂直于軸的直線與拋物線交于、兩點(diǎn),且.
(1)求拋物線的方程;
(2)直線與拋物線交于、兩點(diǎn),若,求點(diǎn)到直線的最大距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若存在實(shí)常數(shù)k和b,使得函數(shù)對(duì)其公共定義域上的任意實(shí)數(shù)x都滿足:恒成立,則稱此直線的“隔離直線”,已知函數(shù)(e為自然對(duì)數(shù)的底數(shù)),有下列命題:
①內(nèi)單調(diào)遞增;
②之間存在“隔離直線”,且b的最小值為;
③之間存在“隔離直線”,且k的取值范圍是;
④之間存在唯一的“隔離直線”.
其中真命題的序號(hào)為__________.(請(qǐng)?zhí)顚?xiě)正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體ABCD-ABCD中,平面垂直于對(duì)角線AC,且平面截得正方體的六個(gè)表面得到截面六邊形,記此截面六邊形的面積為S,周長(zhǎng)為l,則( )
A. S為定值,l不為定值 B. S不為定值,l為定值
C. S與l均為定值 D. S與l均不為定值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com