【題目】已知球O為三棱錐S﹣ABC的外接球, ,則球O的表面積是( )
A.B.C.D.
【答案】A
【解析】
根據(jù)題意能夠求出弦的中垂面,那么中垂面一定經(jīng)過球心,設(shè)出球心O位置,作⊥平面SAC,可得為等邊三角形SAC的中心,在三角形ABM中求球的半徑,需要用到四點共圓的性質(zhì)解題.
解:取SC中點M,連接AM、MB,
因為△SAC是等邊三角形,且SB=BC,
∴AM⊥SC,MB⊥SC,
∴SC⊥平面AMB,
∴球心O在平面AMB上,作⊥平面SAC,可得為等邊三角形SAC的中心,
所以=,
取AB中點N,連接ON,∴ON⊥AB,
∴四點共圓,AO為這四點共圓的直徑,也是三棱錐SABC外接球的半徑,連接,
在△ABM中:,
,
∴∠MAB=90°,
∴在直角三角形中,
由勾股定理,得=,
∴三棱錐SABC外接球的半徑長為AO==,
.
故選:A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,為常數(shù))在內(nèi)有兩個極值點,()
(1)求實數(shù)的取值范圍;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直四棱柱,底面底面為平行四邊形,,且三條棱的長組成公比為的等比數(shù)列,
(1)求異面直線與所成角的大小;
(2)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司甲、乙兩個班組分別試生產(chǎn)同一種規(guī)格的產(chǎn)品,已知此種產(chǎn)品的質(zhì)量指標(biāo)檢測分?jǐn)?shù)不小于70時,該產(chǎn)品為合格品,否則為次品,現(xiàn)隨機抽取兩個班組生產(chǎn)的此種產(chǎn)品各100件進行檢測,其結(jié)果如下表:
質(zhì)量指標(biāo)檢測分?jǐn)?shù) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
甲班組生產(chǎn)的產(chǎn)品件數(shù) | 7 | 18 | 40 | 29 | 6 |
乙班組生產(chǎn)的產(chǎn)品件數(shù) | 8 | 12 | 40 | 32 | 8 |
(1)根據(jù)表中數(shù)據(jù),估計甲、乙兩個班組生產(chǎn)該種產(chǎn)品各自的不合格率;
(2)根據(jù)以上數(shù)據(jù),完成下面的2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為該種產(chǎn)品的質(zhì)量與生產(chǎn)產(chǎn)品的班組有關(guān)?
甲班組 | 乙班組 | 合計 | |
合格品 | |||
次品 | |||
合計 |
(3)若按合格與不合格比例,從甲班組生產(chǎn)的產(chǎn)品中抽取4件產(chǎn)品,從乙班組生產(chǎn)的產(chǎn)品中抽取5件產(chǎn)品,記事件A:從上面4件甲班組生產(chǎn)的產(chǎn)品中隨機抽取2件,且都是合格品;事件B:從上面5件乙班組生產(chǎn)的產(chǎn)品中隨機抽取2件,一件是合格品,一件是次品,試估計這兩個事件哪一種情況發(fā)生的可能性大.
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)站針對“2014年法定節(jié)假日調(diào)休安排”展開的問卷調(diào)查,提出了A、B、C三種放假方案,調(diào)查結(jié)果如下:
支持A方案 | 支持B方案 | 支持C方案 | |
35歲以下 | 200 | 400 | 800 |
35歲以上(含35歲) | 100 | 100 | 400 |
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取n個人,已知從“支持A方案”的人中抽取了6人,求n的值;
(2)在“支持B方案”的人中,用分層抽樣的方法抽取5人看作一個總體,從這5人中任意選取2人,求恰好有1人在35歲以上(含35歲)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知半徑為5的圓的圓心在x軸上,圓心的橫坐標(biāo)是整數(shù),且與直線相切.
(1)求圓的方程;
(2)若直線與圓相交于A,B兩點,是否存在實數(shù)a,使得過點的直線l垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為評估設(shè)備生產(chǎn)某種零件的性能,從該設(shè)備生產(chǎn)零件的流水線上隨機抽取100件零件作為樣本,測量其直徑后,整理得到下表:
直徑/ | 78 | 79 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 93 | 合計 |
件數(shù) | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
經(jīng)計算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計值.
(1)為評判一臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進行評判(表示相應(yīng)事件的頻率):
①;②;③,評判規(guī)則為:若同時滿足上述三個不等式,則設(shè)備等級為甲;僅滿足其中兩個,則等級為乙;若僅滿足其中一個,則等級為丙;若全部不滿足,則等級為丁.試判斷設(shè)備的性能等級.
(2)將直徑小于等于的零件或直徑大于等于的零件認(rèn)定為是“次品”,將直徑小于等于的零件或直徑大于等于的零件認(rèn)定為是“突變品”,從樣本的“次品”中隨意抽取2件零件,求“突變品”個數(shù)的數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com