已知函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若的三個(gè)內(nèi)角,且,,又,求邊的長.

(1);(2) 或.

解析試題分析:本題考查三角恒等變換、三角函數(shù)圖象及其性質(zhì)、解三角形等基礎(chǔ)知識;考查學(xué)生運(yùn)算求解能力;考查數(shù)形結(jié)合思想和分類整合思想.第一問,利用兩角差的正弦公式、倍角公式化簡表達(dá)式,使之化簡為的形式,再結(jié)合圖象求函數(shù)的單調(diào)遞增區(qū)間;第二問,利用第一問化簡的表達(dá)式,由,先求出A角的值,由于A角得到2個(gè)值,所以分情況討論,利用正弦定理求BC的長.
試題解析:(1)      1分
        3分
                                  4分
令            5分
解得    
∴函數(shù)的遞增區(qū)間是 .     6分
(2)由得, ,∵ , ∴ 或 .     8分
(1)當(dāng)時(shí),由正弦定理得,
;           10分
(2) 當(dāng)時(shí),由正弦定理得,
 .           12分
綜上, 或.                 13分
考點(diǎn):三角恒等變換、三角函數(shù)圖象及其性質(zhì)、解三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知, 且.
(1)求函數(shù)的解析式;
(2)當(dāng)時(shí), 的最小值是-4 , 求此時(shí)函數(shù)的最大值, 并求出相應(yīng)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)求函數(shù)的值域和函數(shù)的單調(diào)遞增區(qū)間;
(2)當(dāng),且時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)定義在區(qū)間上的函數(shù)的圖象關(guān)于直線對稱,當(dāng)
時(shí)函數(shù)圖象如圖所示.

(1)求函數(shù)的表達(dá)式;
(2)求方程的解;
(3)是否存在常數(shù)的值,使得上恒成立;若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,某市新體育公園的中心廣場平面圖如圖所示,在y軸左側(cè)的觀光道曲線段是函數(shù),時(shí)的圖象且最高點(diǎn)B(-1,4),在y軸右側(cè)的曲線段是以CO為直徑的半圓弧.⑴試確定A,的值;⑵現(xiàn)要在右側(cè)的半圓中修建一條步行道CDO(單位:米),在點(diǎn)C與半圓弧上的一點(diǎn)D之間設(shè)計(jì)為直線段(造價(jià)為2萬元/米),從D到點(diǎn)O之間設(shè)計(jì)為沿半圓弧的弧形(造價(jià)為1萬元/米).設(shè)(弧度),試用來表示修建步行道的造價(jià)預(yù)算,并求造價(jià)預(yù)算的最大值?(注:只考慮步行道的長度,不考慮步行道的寬度)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)圖象的一部分如圖所示.
(1)求函數(shù)的解析式;
(2)當(dāng)時(shí),求函數(shù)的最大值與最小值及相應(yīng)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)的最小正周期為
(1)求的值;
(2)若函數(shù)的圖像是由的圖像向右平移個(gè)單位長度得到,求的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某實(shí)驗(yàn)室一天的溫度(單位:)隨時(shí)間(單位:)的變化近似滿足函數(shù)關(guān)系;
.
(1)求實(shí)驗(yàn)室這一天上午8時(shí)的溫度;
(2)求實(shí)驗(yàn)室這一天的最大溫差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)),其圖象的兩個(gè)相鄰對稱中心的距離為.
(1)求函數(shù)的解析式;
(2)若△的內(nèi)角為所對的邊分別為(其中),且,
 ,面積為,求的值.

查看答案和解析>>

同步練習(xí)冊答案