設全集U=R,A={y|y=
2x-x2
},B={x|y=ln(1-2x)}.
(1)求A∩(?UB);
(2)記命題p:x∈A,命題q:x∈B,求滿足“p∧q”為假的x的取值范圍.
分析:(1)先求出集合A,B,利用集合的基本運算求A∩(?UB);
(2)根據(jù)條件“p∧q”為假,確定x的取值范圍.
解答:解:(1)∵A={y|y=
2x-x2
}={y|y=
-(x-1)2+1
}={y|0≤y≤1}

B={x|y=ln(1-2x)}={x|1-2x>0}={x|x<
1
2
}
,
?UB={x|x≥
1
2
}

A∩(?UB)={x|
1
2
≤x≤1}

(II)若“p∧q”為真,則A∩B={x|0≤x<
1
2
}

故滿足“p∧q”為假的x的取值范圍{x|x<0,或x≥
1
2
}
點評:本題主要考查集合的基本運算以及復合命題與簡單命題之間的關系的應用,先求出“p∧q”為真的等價條件,利用補集思想求解是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設全集U=R,A={x|
x-2
x+1
<0}
,B={x|sin x≥
3
2
},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設全集U=R,A={x|
x-a
x+b
≥0}
,?UA=(-1,-a),則a+b=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設全集U=R,A={x|x<2},B={x||x-1|≤3},則(?UA)∩B=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設全集U=R,A={x|x2+x-20<0},B={x||2x+5|>7},C={x|x2-3mx+2m2<0}.
(1)若C⊆(A∩B),求m的取值范圍;
(2)若(CUA)∩(CUB)⊆C,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設全集U=R,A={x|ax+1=0},B={1,2},若A∩(?UB)=?,則實數(shù)a的取值集合是( 。
A、{0}
B、?
C、{-1,-
1
2
}
D、{-1,-
1
2
,0}

查看答案和解析>>

同步練習冊答案