已知向量數(shù)學(xué)公式,數(shù)學(xué)公式,若數(shù)學(xué)公式且m,n∈R*,則m+n的最小值為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
D
分析:由題意可得 =m+n+mn=1≤(m+n)+,解此不等式求出m+n的最小值.
解答:由題意可得 =m+n+mn=1≤(m+n)+,當(dāng)且僅當(dāng)m=n時(shí),等號(hào)成立.
即 (m+n)2+4(m+n)-4≥0,解得-2-2≥m+n(舍去),或 m+n≥-2+2
故選D.
點(diǎn)評:本題主要考查兩個(gè)向量數(shù)量積公式的應(yīng)用,基本不等式的應(yīng)用,注意基本不等式的使用條件,并注意檢驗(yàn)等號(hào)成立的條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建模擬)(1)選修4-2:矩陣與變換
已知向量
1
-1
在矩陣M=
1m
01
變換下得到的向量是
0
-1

(Ⅰ)求m的值;
(Ⅱ)求曲線y2-x+y=0在矩陣M-1對應(yīng)的線性變換作用下得到的曲線方程.
(2)選修4-4:極坐標(biāo)與參數(shù)方程
在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)M的極坐標(biāo)為(4
2
π
4
)
,曲線C的參數(shù)方程為
x=1+
2
cosα
y=
2
sinα
(α為參數(shù)).
(Ⅰ)求直線OM的直角坐標(biāo)方程;
(Ⅱ)求點(diǎn)M到曲線C上的點(diǎn)的距離的最小值.
(3)選修4-5:不等式選講
設(shè)實(shí)數(shù)a,b滿足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求a的取值范圍;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建模擬)(1)選修4-2:矩陣與變換
已知向量
1
-1
在矩陣M=
1m
01
變換下得到的向量是
0
-1

(Ⅰ)求m的值;
(Ⅱ)求曲線y2-x+y=0在矩陣M-1對應(yīng)的線性變換作用下得到的曲線方程.
(2)選修4-4:極坐標(biāo)與參數(shù)方程
在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)M的極坐標(biāo)為(4
2
,
π
4
),曲線C的參數(shù)方程為
x=1+
2
cosα
y=
2
sinα
(α為參數(shù)).
(Ⅰ)求直線OM的直角坐標(biāo)方程;
(Ⅱ)求點(diǎn)M到曲線C上的點(diǎn)的距離的最小值.
(3)選修4-5:不等式選講
設(shè)實(shí)數(shù)a、b滿足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求x的取值范圍;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣西柳鐵一中2012屆高三第三次月考數(shù)學(xué)文科試題 題型:013

已知向量,,若且m,n∈R*,則m+n的最小值為

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣西柳州市鐵路一中高三(上)第三次月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知向量,若且m,n∈R*,則m+n的最小值為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案