【題目】為了解某校學(xué)生的視力情況,現(xiàn)采用隨機(jī)抽樣的方式從該校的兩班中各抽5名學(xué)生進(jìn)行視力檢測(cè),檢測(cè)的數(shù)據(jù)如下:
班5名學(xué)生的視力檢測(cè)結(jié)果是: .
班5名學(xué)生的視力檢測(cè)結(jié)果是: .
(1)分別計(jì)算兩組數(shù)據(jù)的平均數(shù),從計(jì)算結(jié)果看,哪個(gè)班的學(xué)生視力較好?并計(jì)算班的5名學(xué)生視力的方差;
(2)現(xiàn)從班上述5名學(xué)生中隨機(jī)選取2名,求這2名學(xué)生中至少有1名學(xué)生的視力低于的概率.
【答案】(1)班學(xué)生的視力較好, ;(2).
【解析】試題分析:此題主要考查樣本數(shù)據(jù)特征數(shù)的應(yīng)用,以及古典概型的概率計(jì)算,屬于中低檔題.(1)根據(jù)題意分別算出兩個(gè)班學(xué)生的視力平均數(shù), , ,由于,所以班學(xué)生的視力較好;由樣本數(shù)據(jù)方差的計(jì)算公式即可算出班名學(xué)生視力的方差為;(2)根據(jù)班名學(xué)生視力的數(shù)據(jù),從中隨機(jī)選取名,則選取的結(jié)果有: , , , , 共個(gè)基本事件,其中至少有名學(xué)生的視力不低于的基本事件有個(gè),故所求概率.
試題解析:(1)班5名學(xué)生的視力平均數(shù)為,
班5名學(xué)生的視力平均數(shù)為.………………3分
從數(shù)據(jù)結(jié)果來(lái)看班學(xué)生的視力較好.……………………………………4分
.………………6分
(2)從班的上述5名學(xué)生中隨機(jī)選取2名,則這兩名學(xué)生視力檢測(cè)結(jié)果有:
, , , , 共10個(gè)基本事件,…………………………9分
其中這2名學(xué)生中至少有1名學(xué)生的視力不低于的基本事件有7個(gè),則所求概率.…………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的頂點(diǎn)C在直線(xiàn)3x﹣y=0上,頂點(diǎn)A、B的坐標(biāo)分別為(4,2),(0,5).
(Ⅰ)求過(guò)點(diǎn)A且在x,y軸上的截距相等的直線(xiàn)方程;
(Ⅱ)若△ABC的面積為10,求頂點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,過(guò)點(diǎn)的直線(xiàn)與拋物線(xiàn)相交于點(diǎn)、兩點(diǎn),設(shè),.
(1)求證:為定值;
(2)是否存在平行于軸的定直線(xiàn)被以為直徑的圓截得的弦長(zhǎng)為定值?如果存在,求出該直線(xiàn)方程和弦長(zhǎng),如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的極值和單調(diào)區(qū)間;
(2)若在區(qū)間上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
⑴當(dāng),求函數(shù)在區(qū)間上的極值;
⑵當(dāng)時(shí),函數(shù)只有一個(gè)零點(diǎn),求正數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的離心率為,以為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線(xiàn)相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn),和平面內(nèi)一點(diǎn)(),過(guò)點(diǎn)任作直線(xiàn)與橢圓相交于, 兩點(diǎn),設(shè)直線(xiàn), , 的斜率分別為, , , ,試求, 滿(mǎn)足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三次函數(shù),下列命題正確的是 .
①函數(shù)關(guān)于原點(diǎn)中心對(duì)稱(chēng);
②以,兩不同的點(diǎn)為切點(diǎn)作兩條互相平行的切線(xiàn),分別與交于兩點(diǎn),則這四個(gè)點(diǎn)的橫坐標(biāo)滿(mǎn)足關(guān)系;
③以為切點(diǎn),作切線(xiàn)與圖像交于點(diǎn),再以點(diǎn)為切點(diǎn)作直線(xiàn)與圖像交于點(diǎn),再以點(diǎn)作切點(diǎn)作直線(xiàn)與圖像交于點(diǎn),則點(diǎn)橫坐標(biāo)為;
④若,函數(shù)圖像上存在四點(diǎn),使得以它們?yōu)轫旤c(diǎn)的四邊形有且僅有一個(gè)正方形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)若是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值;
(2)若對(duì)任意的(為自然對(duì)數(shù)的底數(shù))都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)長(zhǎng)方體的平面展開(kāi)圖及該長(zhǎng)方體的直觀圖的示意圖如圖所示.
(1)請(qǐng)將字母標(biāo)記在長(zhǎng)方體相應(yīng)的頂點(diǎn)處(不需說(shuō)明理由);
(2)在長(zhǎng)方體中,判斷直線(xiàn)與平面的位置關(guān)系,并證明你的結(jié)論;
(3)在長(zhǎng)方體中,設(shè)的中點(diǎn)為,且,,求證:
平面.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com