分析 由圓的方程找出圓心坐標(biāo)和圓的半徑r,顯然直線x=1與圓相切;當(dāng)與圓相切的直線斜率存在時(shí),設(shè)直線的斜率為k,由直線過(1,3),寫出直線的方程,根據(jù)直線與圓相切,得到圓心到直線的距離等于圓的半徑,故利用點(diǎn)到直線的距離公式列出關(guān)于k的方程,求出方程的解得到k的值,確定出直線的方程,綜上,得到所有滿足題意的直線的方程.
解答 解:由圓x2+(y-1)2=1,得到圓心坐標(biāo)為(0,1),半徑為1,
顯然此時(shí)直線x=1與圓x2+(y-1)2=1相切;
當(dāng)與圓相切的直線斜率存在時(shí),設(shè)斜率為k,
此時(shí)直線的方程為y-3=k(x-1),即kx-y+3-k=0,
∵直線與圓相切,
∴圓心到直線的距離d=$\frac{|2-k|}{\sqrt{{k}^{2}+1}}$=r=1,
整理得:(2-k)2=1+k2,解得:k=$\frac{3}{4}$,
此時(shí)直線的方程為3x-4y+9=0,
綜上,所求直線的方程為:3x-4y+9=0或x=1.
故答案為x=1或3x-4y+9=0.
點(diǎn)評(píng) 此題考查了直線與圓的位置關(guān)系,涉及的知識(shí)有:圓的標(biāo)準(zhǔn)方程,直線的點(diǎn)斜式方程,點(diǎn)到直線的距離公式,利用了分類討論的思想,當(dāng)直線與圓相切時(shí),圓心到直線的距離等于圓的半徑,熟練掌握此性質(zhì)是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 135° | B. | 90° | C. | 45°或135° | D. | 30° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 54 | B. | 54π | C. | 81 | D. | 81π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 5 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2\sqrt{3}-3}$ | B. | 2-$\sqrt{3}$ | C. | 2$+\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 0 | C. | 3 | D. | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com