1.已知直線l1:(m+3)x+4y=5和l2:2x+(m+5)y=8,當(dāng)l1⊥l2時(shí),求實(shí)數(shù)m的值$-\frac{13}{3}$.

分析 對m及其直線斜率分類討論,利用直線相互垂直的充要條件即可得出.

解答 解:當(dāng)m=-3或-5時(shí),都不滿足l1⊥l2,舍去.
當(dāng)m≠-3或-5時(shí),∵l1⊥l2,∴$-\frac{m+3}{4}$×$(-\frac{2}{m+5})$=-1,解得m=-$\frac{13}{3}$.
故答案為:-$\frac{13}{3}$.

點(diǎn)評 本題考查了直線相互垂直的充要條件,考查了分類討論方法、推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將點(diǎn)p(-2,2)變換為p′(-4,1)的伸縮變換公式為(  )
A.$\left\{\begin{array}{l}{{x}^{′}=\frac{1}{2}x}\\{{y}^{′}=2y}\end{array}\right.$B.$\left\{\begin{array}{l}{x′=\frac{1}{3}x}\\{y′=2y}\end{array}\right.$C.$\left\{\begin{array}{l}{x′=2x}\\{y′=\frac{1}{2}y}\end{array}\right.$D.$\left\{\begin{array}{l}{x′=x}\\{y′=2y}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,某幾何體的三視圖是三個(gè)半徑相等的圓及每個(gè)圓中兩條互相垂直的半徑.若該幾何體的體積是$\frac{224π}{3}$,則它的表面積是( 。
A.17πB.18πC.60πD.68π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x-ln(x+k)(k>0).
(1)若f(x)的最小值為0,求k的值;
(2)當(dāng)f(x)的最小值為0時(shí),若對?x∈[0,+∞),有f(x)≤ax2恒成立,求實(shí)數(shù)a的最小值;
(3)當(dāng)(2)成立時(shí),證明:$\sum_{i=2}^n$f($\frac{2}{2i-1}$)<$\frac{2n-2}{2n-1}}$(n≥2,n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知圓M:x2+(y-1)2=1和點(diǎn)A(1,3),則過點(diǎn)A與圓M相切的直線方程是x=1或3x-4y+9=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知點(diǎn)P(2,2),圓C:x2+y2-8y=0,過點(diǎn)P的動直線l與圓C交于A,B兩點(diǎn),線段AB的中點(diǎn)為M,O為坐標(biāo)原點(diǎn).
(1)求M的軌跡方程;
(2)當(dāng)|OP|=|OM|時(shí),求l的方程及△POM的面積.
(3)在(2)的條件下過圓C:x2+y2-8y=0和l交點(diǎn)且面積最小的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)集合A={x|(x+1)(4-x)≤0},B={x|2a≤x≤a+2}.
(1)若A∩B≠∅,求實(shí)數(shù)a的取值范圍;
(2)若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖是一個(gè)幾何體的三視圖,其中俯視圖中的曲線為四分之一圓,則該幾何體的表面積為( 。
A.3B.$3+\frac{π}{2}$C.4D.$4-\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={1,2,3,4},B={x|x<3},則A∩B=(  )
A.{1,2,3,4}B.{1,2}C.{3,4}D.{1,2,3}

查看答案和解析>>

同步練習(xí)冊答案