【題目】對于數(shù)列,定義為的“優(yōu)值”.現(xiàn)已知某數(shù)列的“優(yōu)值”為 ,記數(shù)列的前項和為,若對一切的,都有恒成立,則實數(shù)的取值范圍為___________.
【答案】
【解析】
本題可根據(jù)優(yōu)值Hn的特點構(gòu)造數(shù)列{bn}:令bn=2n-1an,n∈N*,然后可通過先求出數(shù)列{bn}的通項公式來求出數(shù)列{an}的通項公式,再可根據(jù)數(shù)列{an}的通項公式寫出數(shù)列的前n項和Sn的表達式,根據(jù)Sn為遞增數(shù)列轉(zhuǎn)化為求Sn最值問題,由此可得m的取值范圍.
由題意,可知對于數(shù)列:
.
∴.
可構(gòu)造數(shù)列:令,n∈N.
設(shè)數(shù)列的前n項和為Tn.
∴.n∈N.
∴①當(dāng)n=1時,;
②當(dāng)n≥2時,.
由①②,可得:,n∈N.
∴,n∈N.
∴數(shù)列是以4為首項,2為公差的等差數(shù)列.
對于數(shù)列通項為:,
,
令,則單調(diào)遞增,
當(dāng),,
則恒成立,∴,
故答案為:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.
(1)經(jīng)計算估計這組數(shù)據(jù)的中位數(shù);
(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機抽取6個,再從這6個中隨機抽取3個,求這3個芒果中恰有1個在內(nèi)的概率.
(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經(jīng)銷商提出如下兩種收購方案:
A:所有芒果以10元/千克收購;
B:對質(zhì)量低于250克的芒果以2元/個收購,高于或等于250克的以3元/個收購,通過計算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點為極點,x軸的正半軸為極軸,建立坐標(biāo)系,兩個坐標(biāo)系取相同的單位長度.已知直線的參數(shù)方程為,曲線的極坐標(biāo)方程為
(1)求曲線的直角坐標(biāo)方程
(2)設(shè)直線與曲線相交于兩點,時,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對于點,若函數(shù)滿足:,都有,就稱這個函數(shù)是點A的“限定函數(shù)”.以下函數(shù):①,②,③,④,其中是原點O的“限定函數(shù)”的序號是______.已知點在函數(shù)的圖象上,若函數(shù)是點A的“限定函數(shù)”,則實數(shù)a的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著科技的發(fā)展,網(wǎng)絡(luò)已逐漸融入了人們的生活.網(wǎng)購是非常方便的購物方式,為了了解網(wǎng)購在我市的普及情況,某調(diào)查機構(gòu)進行了有關(guān)網(wǎng)購的調(diào)查問卷,并從參與調(diào)查的市民中隨機抽取了男女各100人進行分析,從而得到表(單位:人)
經(jīng)常網(wǎng)購 | 偶爾或不用網(wǎng)購 | 合計 | |
男性 | 50 | 100 | |
女性 | 70 | 100 | |
合計 |
(1)完成上表,并根據(jù)以上數(shù)據(jù)判斷能否在犯錯誤的概率不超過0.01的前提下認為我市市民網(wǎng)購與性別有關(guān)?
(2)①現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機選取3人贈送優(yōu)惠券,求選取的3人中至少有2人經(jīng)常網(wǎng)購的概率;
②將頻率視為概率,從我市所有參與調(diào)查的市民中隨機抽取10人贈送禮品,記其中經(jīng)常網(wǎng)購的人數(shù)為,求隨機變量的數(shù)學(xué)期望和方差.
參考公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在三棱臺中,,,.
(1)求證:;
(2)過的平面分別交,于點,,且分割三棱臺所得兩部分幾何體的體積比為,幾何體為棱柱,求的長.
提示:臺體的體積公式(,分別為棱臺的上、下底面面積,為棱臺的高).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸兩端點與左焦點圍成的三角形面積為3,短軸兩端點與長軸一端點圍成的三角形面積為2,設(shè)橢圓的左、右頂點分別為是橢圓上除兩點外一動點.
(1)求橢圓的方程;
(2)過橢圓的左焦點作平行于直線(是坐標(biāo)原點)的直線,與曲線交于兩點,點關(guān)于原點的對稱點為,求證:成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的離心率為,左、右焦點分別為,點D在橢圓C上, 的周長為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過圓上任意一點P作圓E的切線l,若l與橢圓C交于A,B兩點,O為坐標(biāo)原點,求證:為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com