精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓的右焦點為,坐標原點為.橢圓的動弦過右焦點且不垂直于坐標軸,的中點為,過且垂直于線段的直線交射線于點.

(I)求點的橫坐標;

(II)當最大時,求的面積.

【答案】(Ⅰ) 見解析;(Ⅱ).

【解析】分析:(I) 設所在直線為先求出所在直線方程為,再求出直線FM方程為,聯立兩方程即可求出點M的坐標. (II)先利用向量的夾角公式求出,再利用基本不等式求出的最小值,即得最大值和k的值,再利用面積公式求的面積.

詳解:(Ⅰ) 易知,設所在直線為

聯立方程組,化簡得

由韋達定理得

,從而所在直線方程為

所在直線方程為,聯立兩直線方程解得

(Ⅱ)解法一:由(Ⅰ)得,則

(當且僅當時取等號)

取得最小值時,最大,此時

從而.

解法二: 由()得,設直線軸的交點為點

(當且僅當時取等號)

取得最大值時,最大,此時

從而.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】(1)求經過點P(41),且在兩坐標軸上的截距相等的直線方程.

(2)設直線yx2a與圓Cx2y22ay20相交于AB兩點,若|AB|2,求圓C的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1EBC的中點.

1)求證:AEB1C;

2)求異面直線AEA1C所成的角的大小;

3)若GC1C中點,求二面角C-AG-E的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司一年需購買某種原料400噸,設公司每次都購買噸,每次運費為4萬元,一年的總存儲費用為萬元.

1)要使一年的總運費與總存儲費用之和最小,則每次購買多少噸?

2)要使一年的總運費與總存儲費用之和不超過200萬元,則每次購買量在什么范圍?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2017高考特別強調了要增加對數學文化的考查,為此某校高三年級特命制了一套與數學文化有關的專題訓練卷(文、理科試卷滿分均為100分),并對整個高三年級的學生進行了測試.現從這些學生中隨機抽取了50名學生的成績,按照成績?yōu)?/span>, ,…, 分成了5組,制成了如圖所示的頻率分布直方圖(假定每名學生的成績均不低于50分).

(1)求頻率分布直方圖中的的值,并估計所抽取的50名學生成績的平均數、中位數(同一組中的數據用該組區(qū)間的中點值代表);

(2)若高三年級共有2000名學生,試估計高三學生中這次測試成績不低于70分的人數;

(3)若在樣本中,利用分層抽樣的方法從成績不低于70分的三組學生中抽取6人,再從這6人中隨機抽取3人參加這次考試的考后分析會,試求兩組中至少有1人被抽到的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校社團活動開展有聲有色,極大地推動了學生的全面發(fā)展,深受學生歡迎,每屆高一新生都踴躍報名加入.現已知高一某班60名同學中有4名男同學和2名女同學參加心理社,在這6名同學中,2名同學初中畢業(yè)于同一所學校,其余4名同學初中畢業(yè)于其他4所不同的學校.現從這6名同學中隨機選取2名同學代表社團參加校際交流(每名同學被選到的可能性相同).

(Ⅰ)在該班隨機選取1名同學,求該同學參加心理社團的概率;

(Ⅱ)求從6名同學中選出的2名同學代表至少有1名女同學的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若動點在直線上,動點Q在直線上,記線段的中點為

,且,則的取值范圍為 ________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】進入冬天,大氣流動性變差,容易形成霧握天氣,從而影響空氣質量.某城市環(huán)保部門試圖探究車流量與空氣質量的相關性,以確定是否對車輛實施限行.為此,環(huán)保部門采集到該城市過去一周內某時段車流量與空氣質量指數的數據如下表:

(1)根據表中周一到周五的數據,求y關于x的線性回歸方程。

(2)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2,則認為得到的線性回歸方程是可靠的.請根據周六和周日數據,判定所得的線性回歸方程是否可靠?

注:回歸方程中斜率和截距最小二乘估計公式分別為.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,已知直線的參數方程是 (m>0,t為參數),曲線的極坐標方程為

(1)求直線的普通方程和曲線的直角坐標方程;

(2)若直線軸交于點,與曲線交于點,且,求實數的值.

查看答案和解析>>

同步練習冊答案