【題目】如圖所示,將四棱錐S-ABCD的每一個(gè)頂點(diǎn)染上一種顏色,并使同一條棱上的兩端異色,如果只有5種色可供使用,則不同的染色方法種數(shù)為(

A.240B.360C.420D.960

【答案】C

【解析】

可分為兩大步進(jìn)行,先將四棱錐一側(cè)面三頂點(diǎn)染色,然后再分類考慮另外兩頂點(diǎn)的染色數(shù),用分步乘法原理即可得出結(jié)論.

由題設(shè),四棱錐S-ABCD的頂點(diǎn)S、A、B所染的顏色互不相同,它們共有種染色方法.

設(shè)5種顏色為1,2,3,4,5,當(dāng)S、AB染好時(shí),不妨設(shè)其顏色分別為1、2、3,

C2,則D可染345,有3種染法;

C4,則D可染35,有2種染法,若C5,則D可染34,有2種染法.

可見,當(dāng)S、AB已染好時(shí),C、D還有7種染法,故不同的染色方法有(種).

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中,,,,,四邊形是菱形,.

(Ⅰ)求證:

(Ⅱ)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐,底面為正方形,且底面,的平面與側(cè)面的交線為且滿足表示的面積.

(1)證明: 平面;

(2)當(dāng)時(shí),二面角的余弦值為,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>R,且的圖像過點(diǎn).

1)求實(shí)數(shù)b的值;

2)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;

3)是否存在實(shí)數(shù)a,使函數(shù)R上的最大值為?若存在,求出a的值;若不存在,請(qǐng)說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C=2px經(jīng)過點(diǎn)(1,2).過點(diǎn)Q(0,1)的直線l與拋物線C有兩個(gè)不同的交點(diǎn)A,B且直線PAy軸于M直線PBy軸于N

求直線l的斜率的取值范圍;

設(shè)O為原點(diǎn),,,求證為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(Ⅰ)若曲線在點(diǎn)處的切線斜率為0,求a;

(Ⅱ)若處取得極小值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題

①函數(shù)與函數(shù)表示同一個(gè)函數(shù);

②奇函數(shù)的圖像一定通過直角坐標(biāo)系的原點(diǎn);

③若函數(shù)的定義域?yàn)?/span>,則函數(shù)的定義域?yàn)?/span>;

④設(shè)函數(shù)是在區(qū)間上圖像連續(xù)的函數(shù),且,則方程在區(qū)間上至少有一實(shí)根;

其中正確命題的序號(hào)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)自改革開放以來,生活越來越好,肥胖問題也目漸顯著,為分析肥胖程度對(duì)總膽固醇與空腹血糖的影響,在肥胖人群中隨機(jī)抽出8人,他們的肥胖指數(shù)值、總膽固醇指標(biāo)值單位: )、空腹血糖指標(biāo)值(單位: )如下表所示:

(1)用變量的相關(guān)系數(shù),分別說明指標(biāo)值與值、指標(biāo)值與值的相關(guān)程度;

(2)求的線性回歸方程,已知指標(biāo)值超過5.2為總膽固醇偏高,據(jù)此模型分析當(dāng)值達(dá)到多大時(shí),需要注意監(jiān)控總膽固醇偏高情況的出現(xiàn)(上述數(shù)據(jù)均要精確到0.01)

參考公式:相關(guān)系數(shù)

.

參考數(shù)據(jù): ,,,

,,,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程: 為參數(shù)),曲線的參數(shù)方程: 為參數(shù)),且直線交曲線兩點(diǎn).

(1)將曲線的參數(shù)方程化為普通方程,并求時(shí), 的長(zhǎng)度;

(2)巳知點(diǎn),求當(dāng)直線傾斜角變化時(shí), 的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案