【題目】如圖所示,將四棱錐S-ABCD的每一個(gè)頂點(diǎn)染上一種顏色,并使同一條棱上的兩端異色,如果只有5種色可供使用,則不同的染色方法種數(shù)為( )
A.240B.360C.420D.960
【答案】C
【解析】
可分為兩大步進(jìn)行,先將四棱錐一側(cè)面三頂點(diǎn)染色,然后再分類考慮另外兩頂點(diǎn)的染色數(shù),用分步乘法原理即可得出結(jié)論.
由題設(shè),四棱錐S-ABCD的頂點(diǎn)S、A、B所染的顏色互不相同,它們共有種染色方法.
設(shè)5種顏色為1,2,3,4,5,當(dāng)S、A、B染好時(shí),不妨設(shè)其顏色分別為1、2、3,
若C染2,則D可染3或4或5,有3種染法;
若C染4,則D可染3或5,有2種染法,若C染5,則D可染3或4,有2種染法.
可見,當(dāng)S、A、B已染好時(shí),C、D還有7種染法,故不同的染色方法有(種).
故選:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐,底面為正方形,且底面,過的平面與側(cè)面的交線為,且滿足(表示的面積).
(1)證明: 平面;
(2)當(dāng)時(shí),二面角的余弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>R,且的圖像過點(diǎn).
(1)求實(shí)數(shù)b的值;
(2)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)是否存在實(shí)數(shù)a,使函數(shù)在R上的最大值為?若存在,求出a的值;若不存在,請(qǐng)說明理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:=2px經(jīng)過點(diǎn)(1,2).過點(diǎn)Q(0,1)的直線l與拋物線C有兩個(gè)不同的交點(diǎn)A,B,且直線PA交y軸于M,直線PB交y軸于N.
(Ⅰ)求直線l的斜率的取值范圍;
(Ⅱ)設(shè)O為原點(diǎn),,,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)若曲線在點(diǎn)處的切線斜率為0,求a;
(Ⅱ)若在處取得極小值,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題
①函數(shù)與函數(shù)表示同一個(gè)函數(shù);
②奇函數(shù)的圖像一定通過直角坐標(biāo)系的原點(diǎn);
③若函數(shù)的定義域?yàn)?/span>,則函數(shù)的定義域?yàn)?/span>;
④設(shè)函數(shù)是在區(qū)間上圖像連續(xù)的函數(shù),且,則方程在區(qū)間上至少有一實(shí)根;
其中正確命題的序號(hào)是( )
A.(1)B.(2)C.(3)D.(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)自改革開放以來,生活越來越好,肥胖問題也目漸顯著,為分析肥胖程度對(duì)總膽固醇與空腹血糖的影響,在肥胖人群中隨機(jī)抽出8人,他們的肥胖指數(shù)值、總膽固醇指標(biāo)值單位: )、空腹血糖指標(biāo)值(單位: )如下表所示:
(1)用變量與與的相關(guān)系數(shù),分別說明指標(biāo)值與值、指標(biāo)值與值的相關(guān)程度;
(2)求與的線性回歸方程,已知指標(biāo)值超過5.2為總膽固醇偏高,據(jù)此模型分析當(dāng)值達(dá)到多大時(shí),需要注意監(jiān)控總膽固醇偏高情況的出現(xiàn)(上述數(shù)據(jù)均要精確到0.01)
參考公式:相關(guān)系數(shù)
, , .
參考數(shù)據(jù): ,,,,
,,,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程: (為參數(shù)),曲線的參數(shù)方程: (為參數(shù)),且直線交曲線于兩點(diǎn).
(1)將曲線的參數(shù)方程化為普通方程,并求時(shí), 的長(zhǎng)度;
(2)巳知點(diǎn),求當(dāng)直線傾斜角變化時(shí), 的范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com