某幾何體的三視圖的形狀和尺寸如圖所示,則其體積是( 。
A、
64
3
B、
44
3
C、
32
3
D、
32+8
2
3
考點:由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:由已知的三視圖可得:該幾何體是一個四棱錐和四棱柱的組合體,分別求出棱錐和棱柱的體積,相加可得答案.
解答: 解:由已知的三視圖可得:該幾何體是一個四棱錐和四棱柱的組合體,
棱錐的底面是邊長為2的正方形,高為2,故棱錐的體積為:
1
3
×2×2×2=
8
3

棱柱的底面是上底為2,下底為4,高為2的梯形,柱體的高為2,故柱體的體積為:
1
2
×(2+4)×2×2=12,
故組合體的體積V=
8
3
+12=
44
3
,
故選:B
點評:本題考查的知識點是由三視圖求體積和表面積,解決本題的關(guān)鍵是得到該幾何體的形狀.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的圖象(部分)如圖所示,則ω和φ的取值分別是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=
2-
x+3
x+1
的定義域為A,g(x)=lg[(x-a-1)(2a-x)](a<1)的定義域為B.
(Ⅰ)求A、B;
(Ⅱ)若p:x∈A,q:x∈B,¬p是¬q充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

方程x2+y2+x+y-m=0表示一個圓,則m的取值范圍是(  )
A、m>-
1
2
B、m<-
1
2
C、m≤-
1
2
D、m≥-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓中心在原點,焦點在x軸上,離心率e=
2
2
,過橢圓的右焦點且垂直于長軸的弦長為
2

(Ⅰ)求橢圓的標準方程;
(Ⅱ)已知直線l與橢圓相交于P,Q兩點,O為原點,且
OP
OQ
.試探究點O到直線l的距離是否為定值?若是,求出這個定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線與圓(x-2)2+y2=1相離,則其離心率e的取值范圍是( 。
A、e>1
B、e>
1+
5
2
C、e>
2
3
3
D、e>
5
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,滿足a2=3,a5=6,數(shù)列{bn-2an}是公比為3等比數(shù)列,且b2-2a2=9.
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,∠BCA=90°,AC=BC=AA1=2,E,F(xiàn)分別是CC1,A1B1的中點.
(Ⅰ)求證AE⊥平面BCF;
(Ⅱ)求二面角A-CF-B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出a的值是(  )
A、4B、8C、16D、32

查看答案和解析>>

同步練習冊答案