執(zhí)行如圖所示的程序框圖,輸出a的值是( 。
A、4B、8C、16D、32
考點:程序框圖
專題:算法和程序框圖
分析:執(zhí)行程序框圖,依次寫出每次循環(huán)得到的n,a的值,當n=4時,滿足條件n>3,退出循環(huán),輸出a的值為8.
解答: 解:執(zhí)行程序框圖,有
a=1,n=1
n=2,a=2
不滿足條件n>3,n=3,a=4
不滿足條件n>3,n=4,a=8
滿足條件n>3,退出循環(huán),輸出a的值為8.
故選:B.
點評:本題主要考察了程序框圖和算法,正確理解循環(huán)結(jié)構(gòu)的功能是解題的關鍵,屬于基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖的形狀和尺寸如圖所示,則其體積是( 。
A、
64
3
B、
44
3
C、
32
3
D、
32+8
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知底面是正三角形,且三條側(cè)陵相等的三棱柱P-ABC,點P,A,B,C都在同一個球面上,若PA,PB,PC兩兩互相垂直,且球心到截面ABC的距離為
3
3
,則該球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=alnx-x2+1.
(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數(shù)a和b的值;
(2)求證;f(x)≤0對任意x>0恒成立的充要條件是a=2;
(3)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合S={a1,a2,a3,…,an}(n≥3),集合T⊆{(x,y)|x∈S,y∈S,x≠y}且滿足:?ai,aj∈S(i,j=1,2,3,…,n,i≠j),(ai,aj)∈T與(aj,ai)∈T恰有一個成立.對于T定義dT(a,b)=
1,(a,b)∈T
0,(b,a)∈T
lT(ai)=dT(ai,a1)+dT(ai,a2)+…+dT(ai,ai-1)+dT(ai,ai+1)+…+dT(ai,an)(i=1,2,3,…,n).
(Ⅰ)若n=4,(a1,a2),(a3,a2),(a2,a4)∈T,求lT(a2)的值及l(fā)T(a4)的最大值;
(Ⅱ)從lT(a1),lT(a2),…,lT(an)中任意刪去兩個數(shù),記剩下的n-2個數(shù)的和為M.求證:M≥
1
2
n(n-5)+3;
(Ⅲ)對于滿足lT(ai)<n-1(i=1,2,3,…,n)的每一個集合T,集合S中是否都存在三個不同的元素e,f,g,使得dT(e,f)+dT(f,g)+dT(g,e)=3恒成立,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖程序在平面直角坐標系上打印一系列點,則打出的點在圓x2+y2=10內(nèi)的個數(shù)是( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)y=f(x)的定義域為D,如果存在非零常數(shù)T,對于任意x∈D,都有f(x+T)=T•f(x),則稱函數(shù)y=f(x)是“似周期函數(shù)”,非零常數(shù)T為函數(shù)y=f(x)的“似周期”.現(xiàn)有下面四個關于“似周期函數(shù)”的命題:
①如果“似周期函數(shù)”y=f(x)的“似周期”為-1,那么它是周期為2的周期函數(shù);
②函數(shù)f(x)=x是“似周期函數(shù)”;
③函數(shù)f(x)=2-x是“似周期函數(shù)”;
④如果函數(shù)f(x)=cosωx是“似周期函數(shù)”,那么“ω=kπ,k∈Z”.
其中是真命題的序號是
 
.(寫出所有滿足條件的命題序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2
3
sin(
π
4
x)在同一半周期內(nèi)的圖象過點O,P,Q,其中O為坐標原點,P為函數(shù)圖象的最高點,Q為函數(shù)f(x)的圖象與x軸的正半軸的交點.
(1)試判斷△OPQ的形狀,并說明理由.
(2)若將△OPQ繞原點O按逆時針方向旋轉(zhuǎn)角a(0<a<
π
2
)時,頂點P,Q,恰好同時落在曲線y=
k
x
(x>0)上(如圖所示),求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩名同學在5次體能測試中的成績的莖葉圖如圖所示,設
.
x1
,
.
x2
分別表示甲、乙兩名同學測試成績的平均數(shù),s1,s2分別表示甲、乙兩名同學測試成績的標準差,則有( 。
A、
.
x1
=
.
x2
,s1<s2
B、
.
x1
=
.
x2
,s1>s2
C、
.
x1
.
x2
,s1>s2
D、
.
x1
=
.
x2
,s1=s2

查看答案和解析>>

同步練習冊答案