【題目】閱讀程序框圖,該算法的功能是輸出( )
A.數(shù)列{2n﹣1}的前 4項的和
B.數(shù)列{2n﹣1}的第4項
C.數(shù)列{2n}的前5項的和
D.數(shù)列{2n﹣1}的第5項
【答案】D
【解析】解:模擬程序的運(yùn)行,可得: A=0,i=1
執(zhí)行循環(huán)體,A=1=21﹣1,i=2,
不滿足條件i>5,執(zhí)行循環(huán)體,A=3=22﹣1,i=3
不滿足條件i>5,執(zhí)行循環(huán)體,A=7=23﹣1,i=4
不滿足條件i>5,執(zhí)行循環(huán)體,A=15=24﹣1,i=5
不滿足條件i>5,執(zhí)行循環(huán)體,A=31=25﹣1,i=6
滿足條件i>5,退出循環(huán),輸出A的值為31.
觀察規(guī)律可得該算法的功能是輸出數(shù)列{2n﹣1}的第5項.
故選:D.
【考點精析】關(guān)于本題考查的程序框圖,需要了解程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為 .
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)點為P(x,y)為直線l與圓C所截得的弦上的動點,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的方程為C:x2=4y,過點Q(0,2)的一條直線與拋物線C交于A,B兩點,若拋物線在A,B兩點的切線交于點P.
(1)求點P的軌跡方程;
(2)設(shè)直線PQ與直線AB的夾角為α,求α的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確的是( ) ①x∈R,2x>3x;②“x≠3”是“|x|≠3”成立的充分條件;③空間中若直線l若平行于平面α,則α內(nèi)所有直線均與l是異面直線;④空間中有三個角是直角的四邊形不一定是平面圖形.
A.①③
B.①④
C.②④
D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O為坐標(biāo)原點,M(x1 , y1),N(x2 , y2)是橢圓 + =1上的點,且x1x2+2y1y2=0,設(shè)動點P滿足 = +2
(Ⅰ)求動點P的軌跡C的方程;
(Ⅱ)若直線l:y=x+m(m≠0)與曲線C交于A,B兩點,求三角形OAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別是 .
(1)求角C;
(2)若△ABC的中線CD的長為1,求△ABC的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在區(qū)間[﹣5,5]內(nèi)隨機(jī)地取出一個數(shù)a,則恰好使1是關(guān)于x的不等式2x2+ax﹣a2<0的一個解的概率大小為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)正數(shù)x,y滿足log x+log3y=m(m∈[﹣1,1]),若不等式3ax2﹣18xy+(2a+3)y2≥(x﹣y)2有解,則實數(shù)a的取值范圍是( )
A.(1, ]
B.(1, ]
C.[ ,+∞)
D.[ ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 ,(其中φ為參數(shù)),曲線 ,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,射線l:θ=α(ρ≥0)與曲線C1 , C2分別交于點A,B(均異于原點O)
(1)求曲線C1 , C2的極坐標(biāo)方程;
(2)當(dāng) 時,求|OA|2+|OB|2的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com