Loading [MathJax]/jax/output/CommonHTML/jax.js
20.已知x>0,y>0,且x+y+xy=1,則xy的最大值為( �。�
A.1+3B.3-1C.4-23D.3-22

分析 利用基本不等式的性質(zhì)、一元二次不等式的解法即可得出.

解答 解:∵x>0,y>0,且x+y+xy=1,
∴2xy+xy≤1,當(dāng)且僅當(dāng)x=y=2-1時取等號.
設(shè)xy=t,t>0,
則t2+2t-2≤0
解得0<t≤2-1.
則xy的最大值為(2-1)2=3-22,
故選:D.

點(diǎn)評 本題考查了基本不等式的性質(zhì)、一元二次不等式的解法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖所示,點(diǎn)P在邊長為1的正方形的邊上運(yùn)動,設(shè)M是CD邊的中點(diǎn),則當(dāng)P沿著A-B-C-M運(yùn)動時,以點(diǎn)P經(jīng)過的路程x為自變量,三角形APM的面積為y,函數(shù)y=f(x)的圖象大致是( �。�
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.線性回歸方程表示的直線=a+bx,必定過( �。�
A.(0,0)點(diǎn)B.( ¯x¯y) 點(diǎn)C.(0,¯y)點(diǎn)D.( ¯x,0)點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知fx=12x2+2mlnx2+mxmR
(I)當(dāng)m>0時,討論f(x)的單調(diào)性;
(II)若對任意的a,b∈(0,+∞)且a>b有f(a)-f(b)>m(b-a)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ax-lnx(a∈R).
(1)當(dāng)a=1時,求f(x)的最小值;
(2)若存在x∈[1,3],使fxx2+lnx=2成立,求a的取值范圍;
(3)若對任意的x∈[1,+∞),有f(x)≥f(1x)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知拋物線C1:y2=4x的焦點(diǎn)F也是橢圓C2x2a2+y2b2=1ab0的一個焦點(diǎn),C1與C2的公共弦長為26,過點(diǎn)F的直線l與C1相交于A,B兩點(diǎn),與C2相交于C,D兩點(diǎn),且ACBD同向.
(1)求C2的方程;
(2)若|AC|=|BD|,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在如圖所示的四棱錐S-ABCD中,∠DAB=∠ABC=90°,SA=AB=BC=1,AD=3.
(1)在棱SA上確定一點(diǎn)M,使得BM∥平面SCD,保留作圖痕跡,并證明你的結(jié)論.
(2)當(dāng)SA⊥平面ABCD且點(diǎn)E為線段BS的三等分點(diǎn)(靠近B)時,求三棱錐S-AEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.高三學(xué)生在新的學(xué)期里,剛剛搬入新教室,隨著樓層的升高,上下樓耗費(fèi)的精力增多,因此不滿意度升高,當(dāng)教室在第n層樓時,上下樓造成的不滿意度為n,但高處空氣清新,嘈雜音較小,環(huán)境較為安靜,因此隨教室所在樓層升高,環(huán)境不滿意度降低,設(shè)教室在第n層樓時,環(huán)境不滿意度為8n,則同學(xué)們認(rèn)為最適宜的教室應(yīng)在( �。�
A.2樓B.3樓C.4樓D.8樓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若拋物線y2=2mx的準(zhǔn)線方程為x=-3,則實(shí)數(shù)m的值為( �。�
A.-6B.-16C.16D.6

查看答案和解析>>

同步練習(xí)冊答案
关 闭