1.已知實(shí)數(shù)x、y滿(mǎn)足$\left\{{\begin{array}{l}{y≤2}\\{3x-y-3≤0}\\{2x+y-2≥0}\end{array}}\right.$,則目標(biāo)函數(shù)z=3x+y的最大值為7.

分析 作出約束條件不是的可行域,判斷目標(biāo)函數(shù)結(jié)果的點(diǎn),然后求解目標(biāo)函數(shù)的最大值即可.

解答 解:作出可行域如圖所示:

作直線l0:3x+y=0,再作一組平行于l0的直線l:3x+y=z,當(dāng)直線l經(jīng)過(guò)點(diǎn)M時(shí),z=3x+y取得最大值,由$\left\{{\begin{array}{l}{3x-y-3=0}\\{y=2}\end{array}}\right.$得:$\left\{{\begin{array}{l}{x=\frac{5}{3}}\\{y=2}\end{array}}\right.$,所以點(diǎn)M的坐標(biāo)為$(\frac{5}{3},2)$,所以${z_{max}}=3×\frac{5}{3}+2=7$.
故答案為:7.

點(diǎn)評(píng) 本題考查線性規(guī)劃的簡(jiǎn)單應(yīng)用,考查轉(zhuǎn)化思想以及數(shù)形結(jié)合的綜合應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=cosx(cosx+$\sqrt{3}$sinx).
(Ⅰ)求f(x)的最小值;
(Ⅱ)在△ABC中,角A、B、C的對(duì)邊分別是a、b、c,若f(C)=1且c=$\sqrt{7}$,a+b=4,求S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知定義在R上的函數(shù)f(x)滿(mǎn)足f(-x)=-f(x),f(2-x)=f(x),當(dāng)x∈(0,1]時(shí),f(x)=$\frac{1}{x-2}$.
(1)當(dāng)x∈[1,2)時(shí),求f(x)的解析式;
(2)計(jì)算f(0)+f(1)+f(2)+…+f(2016)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)數(shù)列{an}各項(xiàng)均為正值,且前n項(xiàng)和Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$),則此數(shù)列的通項(xiàng)an應(yīng)為( 。
A.an=$\sqrt{n+1}$-$\sqrt{n}$B.an=$\sqrt{n}$-$\sqrt{n-1}$C.an=$\sqrt{n+2}$-$\sqrt{n+1}$D.an=2$\sqrt{n}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=x3-3x-1,g(x)=2x-a,若對(duì)任意x1∈[0,2],存在x2∈[0,2]使|f(x1)-g(x2)|≤2,則實(shí)數(shù)a的取值范圍( 。
A.[1,5]B.[2,5]C.[-2,2]D.[5,9]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的圖象與X軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為$\frac{π}{2}$.若M($\frac{2π}{3}$,-2)為圖象上一個(gè)最低點(diǎn).
(1)求f(x)的解析式;
(2)求函數(shù)y=f(x)圖象的對(duì)稱(chēng)軸方程和對(duì)稱(chēng)中心坐標(biāo).
(3)求f(x)的單減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則此函數(shù)的解析式為f(x)=2sin(2x+$\frac{π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.i為虛數(shù)單位,z=$\frac{5i}{1+2i}$,則|$\overline{z}$|=(  )
A.$\sqrt{5}$B.5C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知不等式|x-$\frac{1}{2}$|≤$\frac{3}{2}$的解集為M,不等式4x-x2>0的解集為N,則M∩N=( 。
A.(0,2]B.[-1,0)C.[2,4)D.[1,4)

查看答案和解析>>

同步練習(xí)冊(cè)答案