設(shè)直線的參數(shù)方程是(t為參數(shù)),曲線C的極坐標(biāo)方程是,則與曲線C相交的弦長(zhǎng)是           .  

解析試題分析:由直線的參數(shù)方程是可知直線為y=,而曲線C的極坐標(biāo)方程是,結(jié)合

然后由圓心到直線的距離和圓的半徑以及半弦長(zhǎng)勾股定理得到與曲線C相交的弦長(zhǎng)是,故答案為
考點(diǎn):本題主要考查了直線與圓的相交弦的長(zhǎng)度的求解問(wèn)題。
點(diǎn)評(píng):解決該試題的關(guān)鍵是將直線的參數(shù)方程化為普通方程,以及由極坐標(biāo)方程得到圓的普通方程。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρsinm=0,曲線C2的參數(shù)方程為(0<α<π),若曲線C1C2有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)m的取值范圍是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

(坐標(biāo)系與參數(shù)方程選做題)已知兩曲線參數(shù)方程分別為 ,它們的交點(diǎn)坐標(biāo)為_(kāi)__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知極坐標(biāo)系的原點(diǎn)在直角坐標(biāo)系的原點(diǎn)處,極軸為軸正半軸,直線的參數(shù)方程為為參數(shù)),曲線的極坐標(biāo)方程為.
(1)寫出的直角坐標(biāo)方程,并說(shuō)明是什么曲線?
(2)設(shè)直線與曲線相交于、兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知曲線C的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線L的參數(shù)方程是(t是參數(shù)).
(1)將曲線C的極坐標(biāo)方程和直線L參數(shù)方程轉(zhuǎn)化為普通方程;
(2)若直線L與曲線C相交于M、N兩點(diǎn),且,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知曲線的極坐標(biāo)方程是,直線的參數(shù)方程是(為參數(shù)).
設(shè)直線與軸的交點(diǎn)是,是曲線上一動(dòng)點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸)中,曲線的方程為
(Ⅰ)求曲線直角坐標(biāo)方程;
(Ⅱ)若曲線交于A、B兩點(diǎn),定點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

(坐標(biāo)系與參數(shù)方程選做題) 如圖, 以過(guò)原點(diǎn)的直線的傾斜角為參數(shù), 則圓的參數(shù)方程為            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

(坐標(biāo)系與參數(shù)方程選做題) 已知直線方程是為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,則圓上的點(diǎn)到直線的距離最小值是                    

查看答案和解析>>

同步練習(xí)冊(cè)答案