是否存在常數(shù)C,使得不等式+≤C≤+對(duì)任意正數(shù)x、y恒成立?試證明你的結(jié)論.
【答案】分析:先用特殊情況確定出C=,先證+,再證+.將不等式等價(jià)轉(zhuǎn)化.
解答:解:當(dāng)x=y時(shí),可由不等式得出C=
下面分兩個(gè)方面證明.
先證+,此不等式?3x(x+2y)+3y(2x+y)≤2(2x+y)(x+2y)?x2+y2≥2xy.
而 x2+y2≥2xy 顯然成立,
+成立.
再證+,
此不等式?3x(2x+y)+3y(x+2y)≥2(x+2y)(2x+y)?2xy≤x2+y2
而 2xy≤x2+y2顯然成立.
+成立,
綜上,可知存在常數(shù)C=,使對(duì)任何正數(shù)x、y不等式恒成立.
點(diǎn)評(píng):先探索C值,然后分別證明不等式的前半部分和后半部分.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=1,nan+1=(n+1)an+cn(n+1),(c為常數(shù))
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(
12
)nan
,是否存在常數(shù)c,使得數(shù)列{bn}為遞減數(shù)列,若存在求出c的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(附加題)是否存在常數(shù)c,使得不等式
x
2x+y+z
+
y
x+2y+z
+
z
x+y+2z
≤c≤
x
x+2y+z
+
y
x+y+2z
+
z
2x+y+z

對(duì)于任意正數(shù)x,y,z恒成立?試證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知b>-1,c>0,函數(shù)f(x)=x+b的圖象與函數(shù)g(x)=x2+bx+c的圖象相切.
(1)設(shè)b=?(c),求?(c);
(2)是否存在常數(shù)c,使得函數(shù)H(x)=f(x)g(x)在(-∞,+∞)內(nèi)有極值點(diǎn).若存在,求出c的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=(x-1)2,g(x)=4(x-1),f(an)和g(an)滿足:a1=2,且(an+1-an)g(an)+f(an)=0.
(1)是否存在常數(shù)C,使得數(shù)列{an+C}為等比數(shù)列?若存在,證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.
(2)設(shè)bn=3f(an)-[g(an+1)]2,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•湖北模擬)已知數(shù)列{an}的前n項(xiàng)和為{Sn},又有數(shù)列{bn}滿足關(guān)系b1=a1,對(duì)n∈N*,有an+Sn=n,bn+1=an+1-an
(1)求證:{bn}是等比數(shù)列,并寫出它的通項(xiàng)公式;
(2)是否存在常數(shù)c,使得數(shù)列{Sn+cn+1}為等比數(shù)列?若存在,求出c的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案