A. | f(x)=$\frac{1}{x}$ | B. | f(x)=(x-1)2 | C. | f(x)=2x | D. | f(x)=-|x| |
分析 若f(x)滿足“對任意x1,x2∈(0,+∞) (x1≠x2),都有 $\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0”,則f(x)是在(0,+∞)內(nèi)是增函數(shù),由此能求出結(jié)果.
解答 解:若f(x)滿足“對任意x1,x2∈(0,+∞) (x1≠x2),都有 $\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0”,
則f(x)是在(0,+∞)內(nèi)是增函數(shù),
在A中,f(x)=$\frac{1}{x}$在(0,+∞)是減函數(shù),故A錯誤;
在B中,f(x)=(x-1)2在(0,+∞)內(nèi)先減后增,故B錯誤;
在C中,f(x)=2x在(0,+∞)是增函數(shù),故C正確;
在D中,f(x)=-|x|在(0,+∞)內(nèi)是減函數(shù),故D錯誤.
故選:C.
點評 本題考查函數(shù)的單調(diào)性的判斷及應(yīng)用,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2$\sqrt{\frac{a}{a-1}}$ | B. | $\sqrt{5}$+1 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,1] | B. | [0,1] | C. | [0,1]∪(1,4] | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com