關于x的不等式|x-
(a+1)2
2
|≤
(a-1)2
2
與x2-3(a+1)x+2(3a+1)≤0(a∈R)的解集分別是A和B,求使A⊆B的a的取值范圍.
分析:解絕對值不等式求得A=[2a,a2-1],解一元二次不等式求得B={x|(x-2)[x-(3a+1)]≤0},由A⊆B,可得
2≤2a
a2+1≤3a+1
,或
3a+1≤2a
a2+1≤2
.分別求得這兩個
不等式組的解集,再取并集,即得所求.
解答:解:由關于x的不等式|x-
(a+1)2
2
|≤
(a-1)2
2
,可得-
(a-1)2
2
≤x-
(a+1)2
2
(a-1)2
2
,解得 2a≤x≤a2-1,
∴A=[2a,a2-1].
解不等式x2-3(a+1)x+2(3a+1)≤0可得,(x-2)[x-(3a+1)]≤0,∴B={x|(x-2)[x-(3a+1)]≤0},
由A⊆B,如圖所示:
可得
2≤2a
a2+1≤3a+1
,或 
3a+1≤2a
a2+1≤2

解得 1≤a≤3,或 a=-1,故a的取值范圍為 {a|1≤a≤3,或 a=-1 }.
點評:本題主要考查絕對值不等式的解法,一元二次不等式的解法,集合間的包含關系,體現(xiàn)了分類討論的數(shù)學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)A.(不等式選做題)若關于x的不等式|x+3|-|x+2|≥log2a有解,則實數(shù)a的取值范圍是:
 

B.(幾何證明選做題)如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長AB和DC相交于點P.若
PB
PA
=
1
2
,
PC
PD
=
1
3
,則
BC
AD
的值為
 

C.(坐標系與參數(shù)方程選做題)設曲線C的參數(shù)方程為
x=3+2
2
cosθ
y=-1+2
2
sinθ
(θ為參數(shù)),以原點為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρ=
2
cosθ-sinθ
,則曲線C上到直線l距離為
2
的點的個數(shù)為:
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

研究問題:“已知關于x的不等式ax2-bx+c>0,解集為(1,2),解關于x的不等式cx2-bx+a>0”有如下解法:
解:由cx2-bx+a>0且x≠0,所以
(c×2-bx+a)
x2
>0得a(
1
x
2-
b
x
+c>0,設
1
x
=y,得ay2-by+c>0,由已知得:1<y<2,即1<
1
x
<2,∴
1
2
<x<1所以不等式cx2-bx+a>0的解集是(
1
2
,1).
參考上述解法,解決如下問題:已知關于x的不等式
b
(x+a)
+
(x+c)
(x+d)
<0的解集是:(-3,-1)∪(2,4),則不等式
bx
(ax-1)
+
(cx-1)
(dx-1)
<0的解集是
(-
1
2
,-
1
4
)∪(
1
3
,1)
(-
1
2
,-
1
4
)∪(
1
3
,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a>0,使關于x的不等式|x-3|+|x-4|<a在R上的解集不是空集,設a的取值集合是A;若不等式|x|>bx(b∈R)的解集為(0,+∞),設實數(shù)b的取值集合是B,試求當x∈A∪B時,f(x)=2|x+1|-|x-1|的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題:
①設函數(shù)f(x)=g(x)+x2,曲線y=g(x)在點(1,g(1))處的切線方程為y=2x+1,則曲線y=f(x)在點(1,f(1))處切線的斜率為-
1
2
;
②關于x的不等式(a-3)x2<(4a-2)x對任意的a∈(0,1)恒成立,則x的取值范圍是(-∞,-1]∪[
2
3
,+∞)
,
③變量X與Y相對應的一組數(shù)據(jù)為(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);變量U與V相對應的一組數(shù)據(jù)為(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),r1表示變量Y與X之間的線性相關系數(shù),r2表示變量V與U之間的線性相關系數(shù),則r2<0<r1;
④下表提供了某廠節(jié)能降耗技術改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應的生產(chǎn)能耗y(噸標準煤)的幾組對照數(shù)據(jù)
x 3 4 5 6
y 2.5 3 4 4.5
根據(jù)上表提供的數(shù)據(jù),得出y關于x的線性回歸方程為y=a+0.7x,則a=-0.35;
以上命題正確的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河南省原名校高三下學期第二次聯(lián)考文科數(shù)學試卷(解析版) 題型:解答題

已知關于x的不等式|x-3|+|x-4|< 3a2-7a+4.

(1)當a=2時,解上述不等式;

(2)如果關于x的不等式| x-3|+|x-4|< 23a27a+4的解集為空集,求實數(shù)a的取值范圍.

 

查看答案和解析>>

同步練習冊答案