分析 (1)當(dāng)a=-2時(shí),我們易得到函數(shù)的解析式,進(jìn)而求出函數(shù)的導(dǎo)函數(shù),列表討論導(dǎo)函數(shù)的符號,即可得到函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)在[1,3]上是減函數(shù),則g'(x)≤0在[1,3]上恒成立,由此轉(zhuǎn)化為函數(shù)恒成立問題,并轉(zhuǎn)化為a的不等式,解不等式即可得到實(shí)數(shù)a的取值范圍.
解答 解:(1)函數(shù)f(x)的定義域?yàn)椋?,+∞),
當(dāng)a=-2時(shí),f(x)=x2-2lnx,
∴f′(x)=2x-$\frac{2}{x}$=$\frac{2(x+1)(x-1)}{x}$
當(dāng)x變化時(shí),f'(x),f(x)的變化情況如下:
x | (0,1) | 1 | (1,+∞) |
f'(x) | - | 0 | + |
f(x) | 極小值 |
點(diǎn)評 本題考查的知識點(diǎn)是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,其中根據(jù)原函數(shù)的解析式,求出導(dǎo)函數(shù)的解析式是解答本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | ||
C. | 2 | D. | 與實(shí)數(shù)a的取值有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
文科 | 理科 | |
數(shù)學(xué)優(yōu)秀 | 10 | 13 |
數(shù)學(xué)不優(yōu)秀 | 20 | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8$\sqrt{5}$ | B. | 4$\sqrt{5}$ | C. | 12 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 45 | B. | 40 | C. | 35 | D. | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com