(本小題滿分12分)
如圖,已知三棱柱ABC-A1B1C1,側(cè)面BCC1B1丄底面ABC.

(I)若M、N分別是AB,A1C的中點(diǎn),求證:MN//平面BCC1B1
(II)若三棱柱ABC-A1B1C1的各棱長(zhǎng)均為2,側(cè)棱BB1與底面 ABC所成的角為60°.問(wèn)在線段A1C1上是否存在一點(diǎn)P,使得平面B1CP丄平面ACC1A1,若存在,求C1P與PA1的比值,若不存在,說(shuō)明 理由.

(1)利用線面平行的判定定理來(lái)證明即可。
(2)

解析試題分析:(Ⅰ)證明:連接,因?yàn)锳M=MB,所以MN……………2分

,
所以MN//.…………4分
(Ⅱ)作,
因?yàn)槊?img src="http://thumb.zyjl.cn/pic5/tikupic/7b/d/1pks04.png" style="vertical-align:middle;" />底面
所以

以O(shè)為原點(diǎn),建立如圖所示空間直角坐標(biāo)系,則,B(-1,0,0),C(1,0,0)
.由可求出
…………6分
設(shè)P(x,y,z),
.解得,
,.
設(shè)平面的法向量為
解得………8分
同理可求出平面的法向量.…………10分
由面平面,得,即
解得:………………12分
考點(diǎn):本試題考查了空間中的垂直和平行關(guān)系的證明。
點(diǎn)評(píng):解決這類問(wèn)題的關(guān)鍵是利用幾何性質(zhì),線面的平行和垂直的判定定理和性質(zhì)定理,來(lái)加以證明,或者利用空間向量的思想,建立直角坐標(biāo)系,求點(diǎn)的坐標(biāo),運(yùn)用向量法來(lái)得到求解,屬于中檔題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)如圖,五面體中, ,底面ABC是正三角形, =2.四邊形是矩形,二面角為直二面角,D為中點(diǎn)。
(I)證明:平面
(II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分10分)
如圖,已知正四棱柱ABCD—A1B1C1D1中,底面邊長(zhǎng)AB=2,側(cè)棱BB1的長(zhǎng)為4,過(guò)點(diǎn)B作B1C的垂線交側(cè)棱CC1于點(diǎn)E,交B1C于點(diǎn)F,

⑴求證:A1C⊥平面BDE;
⑵求A1B與平面BDE所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分16分)如圖,在六面體中,,.

求證:(1);(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,底面ABCD是一直角梯形,,,且PA=AD=DC=AB=1.

(1)證明:平面平面
(2)設(shè)AB,PA,BC的中點(diǎn)依次為M、N、T,求證:PB∥平面MNT
(3)求異面直線所成角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
如圖,斜三棱柱中,側(cè)面底面ABC,側(cè)面是菱形,,E、F分別是AB的中點(diǎn).

求證:(1)EF∥平面;
(2)平面CEF⊥平面ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)在直三棱柱(側(cè)棱垂直底面)中,,,且異面直線所成的角等于

(Ⅰ)求棱柱的高;
(Ⅱ)求與平面所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平行四邊形中,,,將沿折起,使

(1)求證:平面; 
(2)求平面和平面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
如圖所示,四棱錐中,底面為正方形,平面,,,,分別為、的中點(diǎn).

(1)求證:;
(2)求平面EFG與平面ABCD所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案