分析 構(gòu)造思想,cosθ=cos(θ+$\frac{π}{3}-\frac{π}{3}$),θ為鈍角,sin(θ+$\frac{π}{3}$)=-$\frac{3}{5}$<0,可得θ+$\frac{π}{3}$在第三象限.可得cos(θ+$\frac{π}{3}$),即可求解.
解答 解:由題意,∵θ為鈍角,sin(θ+$\frac{π}{3}$)=-$\frac{3}{5}$<0,
∴θ+$\frac{π}{3}$在第三象限.
那么:cos(θ+$\frac{π}{3}$)=$-\frac{4}{5}$,
故得cosθ=cos(θ+$\frac{π}{3}-\frac{π}{3}$)=cos(θ+$\frac{π}{3}$)cos$\frac{π}{3}$)+sin(θ+$\frac{π}{3}$)sin$\frac{π}{3}$
=$\frac{1}{2}×(-\frac{4}{5})$+$\frac{\sqrt{3}}{2}×(-\frac{3}{4})$=$\frac{{-4-3\sqrt{3}}}{10}$.
故答案為:$\frac{-4-3\sqrt{3}}{10}$
點評 本題考查的知識點是兩角和與差的余弦公式的構(gòu)造思想,難度不大,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{4}$] | B. | [$\frac{1}{4}$,1) | C. | (0,$\frac{1}{2}$] | D. | [$\frac{1}{4}$,$\frac{1}{2}$]∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $t=-\frac{{\sqrt{3}}}{2}$,m的最小值為$\frac{π}{6}$ | B. | $t=-\frac{{\sqrt{3}}}{2}$,m的最小值為$\frac{π}{12}$ | ||
C. | $t=-\frac{1}{2}$,m的最小值為$\frac{π}{6}$ | D. | $t=-\frac{1}{2}$,m的最小值為$\frac{π}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4個 | B. | 3個 | C. | 2個 | D. | 1個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com