某公司生產(chǎn)的商品A每件售價為5元時,年銷售10萬件.
(1)據(jù)市場調(diào)查,若價格每提高一元,銷量相應(yīng)減少1萬件,要使銷售收入不低于原銷售收入,該商品的銷售價格最多提高多少元?
(2)為了擴大該商品的影響力,公司決定對該商品的生產(chǎn)進行技術(shù)革新,將技術(shù)革新后生產(chǎn)的商品售價提高到每件x元,公司擬投入
1
2
(x2+x)
萬元作為技改費用,投入
x
4
萬元作為宣傳費用.試問:技術(shù)革新后生產(chǎn)的該商品銷售量m至少應(yīng)達到多少萬件時,才可能使技術(shù)革新后的該商品銷售收入等于原銷售收入與總投入之和?
考點:函數(shù)模型的選擇與應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)條件建立函數(shù)關(guān)系即可;
(2)結(jié)合基本不等式的性質(zhì)即可求出函數(shù)的最值.
解答: 解:(1)設(shè)商品的銷售價格提高a元,則銷售量減少10-a萬件,
則(10-a)(5+a)≥50,即a2-5a≤0,解得0≤a≤5,
故商品的銷售價格最多提高5元.
(2)由題意知,改革后的銷售收入為mx萬元,若使技術(shù)革新后的該商品銷售收入等于原銷售收入與總投入之和,
則只需要滿足mx=
1
2
(x2+x)+
x
4
+50,(x>5)即可,
即m=
1
2
x+
3
4
+
50
x
3
4
+2
1
2
x•
50
x
=10+
3
4
=
43
4
,
當(dāng)且僅當(dāng)
1
2
x=
50
x
,即x=10時,取等號,
答:銷售量m至少應(yīng)達到
43
4
萬件時,才可能使技術(shù)革新后的該商品銷售收入等于原銷售收入與總投入之和.
點評:本題主要考查函數(shù)的應(yīng)用問題,根據(jù)條件建立函數(shù)關(guān)系,利用基本不等式的性質(zhì)求最值是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:若x>y,則-x<-y,q:?x0>0,(x0+1)e x0≤1,下列命題為真的是( 。
A、p∧q
B、(¬p)∨q
C、(¬p)∨(¬q)
D、p∨(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(1+x)-
kx
1+x
,k∈R.
(1)討論f(x)的單調(diào)區(qū)間;
(2)當(dāng)k=1時,求f(x)在[0,+∞)上的最小值,并證明
1
2
+
1
3
+
1
4
+…+
1
n+1
<ln(1+n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)下列條件求雙曲線的標準方程:
(1)經(jīng)過點(
15
4
,3),且一條漸近線方程為4x+3y=0;
(2)P(0,6)與兩個焦點的連線互相垂直,與兩個頂點連線的夾角為
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x2+6<5x,y=x2+5x+6,則有(  )
A、y為任意實數(shù)
B、0<y<20
C、20<y<30
D、y>30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)的圖象經(jīng)過點(0,-3),且f(4)=f(-2)=5,
(1)求f(x)的解析式
(2)若x∈[0,3],求函數(shù)f(x)對應(yīng)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=λ,的一條漸近線方程y=2x,則離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓長軸端點為A,B,O為橢圓中心,F(xiàn)為橢圓的右焦點,
AF
FB
=1,且斜率為
2
2
的直線m與橢圓交于不同的兩點,這兩點在x軸上的射影恰好是橢圓的兩個焦點.
(1)求橢圓的標準方程;
(2)記橢圓的上頂點為M,直線l交橢圓于P,Q兩點,問:
是否存在直線l,使點F恰為△PQM的垂心?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a,bc為實數(shù),則下列命題中正確的是( 。
A、若a>b,則ac2>bc2
B、若a<b,則a+c<b+c
C、若a<b,則ac<bc
D、若a<b,則
1
a
1
b

查看答案和解析>>

同步練習(xí)冊答案