若a,bc為實(shí)數(shù),則下列命題中正確的是(  )
A、若a>b,則ac2>bc2
B、若a<b,則a+c<b+c
C、若a<b,則ac<bc
D、若a<b,則
1
a
1
b
考點(diǎn):不等式的基本性質(zhì)
專題:不等式
分析:根據(jù)不等式的基本性質(zhì),判斷每個選項(xiàng)即可
解答: 解:對于A:若a>b,則ac2>bc2,當(dāng)c=0時不成立,
對于B:根據(jù)不等式的性質(zhì)1,若a<b,則a+c<b+c,故成立,
對于C:若a<b,則ac<bc,當(dāng)c=0時不成立,
對于D:若a<b,則ac<bc,當(dāng)a=-1,b=1時不成立,
故選:B
點(diǎn)評:本題主要考查了不等式的基本性質(zhì),屬于基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某公司生產(chǎn)的商品A每件售價為5元時,年銷售10萬件.
(1)據(jù)市場調(diào)查,若價格每提高一元,銷量相應(yīng)減少1萬件,要使銷售收入不低于原銷售收入,該商品的銷售價格最多提高多少元?
(2)為了擴(kuò)大該商品的影響力,公司決定對該商品的生產(chǎn)進(jìn)行技術(shù)革新,將技術(shù)革新后生產(chǎn)的商品售價提高到每件x元,公司擬投入
1
2
(x2+x)
萬元作為技改費(fèi)用,投入
x
4
萬元作為宣傳費(fèi)用.試問:技術(shù)革新后生產(chǎn)的該商品銷售量m至少應(yīng)達(dá)到多少萬件時,才可能使技術(shù)革新后的該商品銷售收入等于原銷售收入與總投入之和?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
log2x,x>0
log
1
2
(-x),x<0
,若f(-x)>f(x),則x的取值范圍是( 。
A、(-∞,-1)∪(1,+∞)
B、(-1,0)∪(0,1)
C、(-∞,-1)∪(0,1)
D、(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1:x2+y2-2x=0與直線l:x+y-2=0.
(1)求圓心C1到直線l的距離;
(2)判斷直線與圓的位置關(guān)系,如果兩者相交,請求出交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

準(zhǔn)線方程x=-1的拋物線的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1的右焦點(diǎn)到漸近線的距離是其到左頂點(diǎn)距離的一半,則雙曲線的離心率e=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x2-4x+3|,若方程[f(x)]2+bf(x)+c=0恰有七個不相同的實(shí)數(shù),則實(shí)數(shù)的取值范圍是( 。
A、(-2,-1)
B、(-2,0)
C、(0,1)
D、(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正三棱柱的底邊長為2,高為1,則該正三棱柱的外接球的表面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
3+i
1+i
等于( 。
A、1+2iB、1-2i
C、2-iD、2+i

查看答案和解析>>

同步練習(xí)冊答案