函數(shù)y=tan(
π
4
-x)的單調(diào)遞減區(qū)間是
 
考點(diǎn):正切函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:函數(shù)y=tan(
π
4
-x)的單調(diào)遞減區(qū)間,即為y=tan(x-
π
4
)的單調(diào)遞增區(qū)間.令kπ-
π
2
<x-
π
4
<kπ+
π
2
,k∈z,求得x的范圍,可得y=tan(x-
π
4
)的單調(diào)遞增區(qū)間.
解答:解:函數(shù)y=tan(
π
4
-x)=-tan(x-
π
4
)的單調(diào)遞減區(qū)間,即為y=tan(x-
π
4
)的單調(diào)遞增區(qū)間.
令kπ-
π
2
<x-
π
4
<kπ+
π
2
,k∈z,求得kπ-
π
4
<x<kπ+
4
,
可得函數(shù)y=tan(x-
π
4
)的單調(diào)遞增區(qū)間為(kπ-
π
4
,kπ+
4
) (k∈Z),
故答案為:(kπ-
π
4
,kπ+
4
)(k∈Z).
點(diǎn)評:本題主要考查正切函數(shù)的單調(diào)性,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

處理框的作用是(  )
A、表示一個算法的開始
B、表示一個算法輸入
C、賦值計算
D、判斷條件是否成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n表示兩條不同直線,α表示平面,下列說法正確的是(  )
A、若m∥α,n∥α,則m∥n
B、若m⊥α,n?α,則m⊥n
C、若m⊥α,m⊥n,則n∥α
D、若m∥α,m⊥n,則n⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的前n項(xiàng)和為Sn(an∈R),且S2=7,S6=91,則S4的值為( 。
A、21B、28
C、-21D、28或-21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系Oxyz中,點(diǎn)A(-1,2,3)關(guān)于平面Oxy的對稱點(diǎn)是B,則|AB|=( 。
A、2
B、4
C、6
D、2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A,B是海面上位于東西方向相距5(3+
3
)海里的兩個觀測點(diǎn).現(xiàn)位于A點(diǎn)北偏東45°,B點(diǎn)北偏西60°的D點(diǎn)有一艘輪船發(fā)出求救信號,位于B點(diǎn)南偏西60°且與B點(diǎn)相距20
3
海里的C點(diǎn)的救援船立即前往營救,其航行速度為30海里/小時,該救援船到達(dá)D點(diǎn)需要的時間為(  )小時.
A、1
B、2
C、1+
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中能用二分法求零點(diǎn)的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)與雙曲線
x2
4
-
y2
12
=1的焦點(diǎn)相同,且橢圓上任意一點(diǎn)到兩焦點(diǎn)的距離之和為10,那么,該橢圓的離心率等于( 。
A、
3
5
B、
4
5
C、
5
4
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省高三上學(xué)期11月檢測考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

函數(shù)的最小正周期是

 

查看答案和解析>>

同步練習(xí)冊答案