證明:
(1)當(dāng)x∈R時(shí),1+2x4≥2x3+x2
(2)當(dāng)a,b∈R+時(shí),aabb≥(ab) 
a+b
2
考點(diǎn):二維形式的柯西不等式
專題:證明題,不等式的解法及應(yīng)用,推理和證明
分析:(1)將所證的不等式作差后化積,通過判斷符號即可證得結(jié)論成立.
(2)利用相除法,再根據(jù)指數(shù)函數(shù)的性質(zhì)即可得出結(jié)論.
解答: 證明:(1)∵x為實(shí)數(shù),
∴1+2x4-x2-2x3=2x3(x-1)-(x-1)(x+1)
=(x-1)(2x3-x-1)
=(x-1)[(x-1)(2x2+2x+1)]
=(x-1)2[2(x+0.5)2+0.5]≥0,
∴1+2x4≥x2+2x3
(2)設(shè)y=aabb÷(ab) 
a+b
2
=(
a
b
)
a-b
2

當(dāng)a>b時(shí),
a
b
>1,
a-b
2
>0,據(jù)指數(shù)函數(shù)的性質(zhì)可知y>1,即aabb≥(ab) 
a+b
2

當(dāng)a<b時(shí),0<
a
b
<1,
a-b
2
<0,根據(jù)指數(shù)函數(shù)的性質(zhì)可知y>1,即aabb≥(ab) 
a+b
2

綜上所述,aabb≥(ab) 
a+b
2
點(diǎn)評:本題考查不等式的證明,著重考查作差(商)法的應(yīng)用,作差后化積是關(guān)鍵,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

向量
a
,
b
,滿足|
a
|=4,|
b
|=2,且(
a
-
b
)•
b
=0,則
a
b
的夾角( 。
A、
5
6
π
B、
2
3
π
C、
π
2
D、
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在定義域內(nèi)滿足f(x)•f(y)=f(x+y)的函數(shù)為(  )
A、f(x)=kx(k≠0)
B、f(x)=ax(a>0且a≠1)
C、f(x)=logax(a>0且a≠1)
D、f(x)=ax2+bx+c(a≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},{bn}滿足:bn=an+1-an(n∈N*).
(1)若a1=1,bn=n,求數(shù)列{an}的通項(xiàng)公式;
(2)若bn+1bn-1=bn(n≥2),且b1=1,b2=2,記cn=a6n-1(n≥1)求證:數(shù)列{cn}為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若y=
x
0
(sint+cost•sint)dt,則y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在自行車比賽中,運(yùn)動(dòng)員的位移與比賽時(shí)間t存在關(guān)系s(t)=10t+5t2(s的單位是m,t的單位是s).
(1)求t=20,△t=0.1時(shí)的△s與
△s
△t
;
(2)求t=20時(shí)的速度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的每一項(xiàng)是它的序號的算術(shù)平方根加上序號的2倍.
(1)求這個(gè)數(shù)列的第4項(xiàng)與第25項(xiàng).
(2)253和153是不是這個(gè)數(shù)列中的項(xiàng)?如果是,是第幾項(xiàng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C分別對應(yīng)邊a,b,c,已知a,b,c成等比數(shù)列,且cosB=
3
4

(1)若
BA
BC
=
3
2
,求a+c的值;  
(2)求
1
tanA
+
1
tanC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cosx(sinx-cosx)+1.
(Ⅰ)求函數(shù)f(x)的最小周期和單調(diào)增區(qū)間.
(Ⅱ)在△ABC中,角A,B,C的對邊分別是a,b,c,且銳角A滿足f(A)=1,b=
2
,c=3,求a值.

查看答案和解析>>

同步練習(xí)冊答案