A. | 2n2+2n | B. | n2+2n | C. | 2n2+n | D. | 2(n2+2n) |
分析 利用數(shù)列遞推關(guān)系可得an,再利用等差數(shù)列的求和公式即可得出.
解答 解:∵$\sqrt{{a}_{1}}$+$\sqrt{{a}_{2}}$+…+$\sqrt{{a}_{n}}$=n2+n,∴n=1時(shí),$\sqrt{{a}_{1}}$=2,解得a1=4.
n≥2時(shí),$\sqrt{{a}_{1}}$+$\sqrt{{a}_{2}}$+…+$\sqrt{{a}_{n-1}}$=(n-1)2+n-1,
相減可得:$\sqrt{{a}_{n}}$=2n,∴an=4n2.n=1時(shí)也成立.
∴$\frac{{a}_{n}}{n}$=4n.
則a1+$\frac{{a}_{2}}{2}$+…+$\frac{{a}_{n}}{n}$=4(1+2+…+n)=4×$\frac{n(1+n)}{2}$=2n2+2n.
故選:A.
點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式、數(shù)列遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (2,1) | B. | (-2,1) | C. | $({-1,\frac{1}{4}})$ | D. | $({1,\frac{1}{4}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
氣溫(℃) | 18 | 13 | 10 | -1 |
杯數(shù) | 24 | 34 | 38 | 64 |
A. | 70 | B. | 50 | C. | 60 | D. | 80 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12 | B. | $2\sqrt{6}$ | C. | $2\sqrt{3}$ | D. | $\root{3}{12}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com