【題目】橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,焦點(diǎn)到短軸端點(diǎn)的距離為2,離心率為.
(Ⅰ)求該橢圓的方程;
(Ⅱ)若直線與橢圓交于, 兩點(diǎn)且,是否存在以原點(diǎn)為圓心的定圓與直線相切?若存在求出定圓的方程;若不存在,請說明理由
【答案】(1)橢圓方程為;(2)存在,方程為.
【解析】試題分析:(1)根據(jù)橢圓幾何性質(zhì)可知,橢圓焦點(diǎn)到短軸端點(diǎn)的距離為,即,又離心率,所以,則,所以橢圓方程為;(2)若直線斜率存在時,設(shè)直線: ,將直線方程與橢圓方程聯(lián)立,消去未知數(shù),得到關(guān)于的一元二次方程,設(shè), ,然后表示出韋達(dá)定理,由于,轉(zhuǎn)化為,即,坐標(biāo)表示為,于是得到關(guān)于的等式,再求原點(diǎn)O到直線AB的距離,與前面的等式聯(lián)立化簡、整理可以得出,最后得到圓的方程.
試題解析:(Ⅰ)設(shè)橢圓的半焦距為,
∵橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,焦點(diǎn)到短軸端點(diǎn)的距離為2,離心率為,
∴由題意,且,解得, .
∴所求橢圓方程為.
(Ⅱ)設(shè), ,若存在,則設(shè)直線: ,由,得
∴,且,由,知 ,代入得,原點(diǎn)到直線的距離,
當(dāng)的斜率不存在時, ,得, ,依然成立
∴點(diǎn)到直線的距離為定值.
∴定圓方程為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率為,乙每次擊中目標(biāo)的概率為求:(1)甲恰好擊中目標(biāo)2次的概率;(2)乙至少擊中目標(biāo)2次的概率;
(3)乙恰好比甲多擊中目標(biāo)2次的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知斜三棱柱的底面是直角三角形,,側(cè)棱與底面所成角為,點(diǎn)在底面上身影落在上.
(1)求證:平面;
(2)若點(diǎn)恰為中點(diǎn),且,求的大;
(3)若,且當(dāng)時,求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓.
(1)若不經(jīng)過坐標(biāo)原點(diǎn)的直線與圓相切,且直線在兩坐標(biāo)軸上的截距相等,求直線的方程;
(2)設(shè)點(diǎn)在圓上,求點(diǎn)到直線距離的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知坐標(biāo)平面上點(diǎn)與兩個定點(diǎn), 的距離之比等于5.
(1)求點(diǎn)的軌跡方程,并說明軌跡是什么圖形;
(2)記(1)中的軌跡為,過點(diǎn)的直線被所截得的線段的長為 8,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】性格色彩學(xué)創(chuàng)始人樂嘉是江蘇電視臺當(dāng)紅節(jié)目“非誠勿擾”的特約嘉賓,他的點(diǎn)評視角獨(dú)特,語言犀利,給觀眾留下了深刻的印象,某報社為了了解觀眾對樂嘉的喜愛程度,隨機(jī)調(diào)查了觀看了該節(jié)目的140名觀眾,得到如下的列聯(lián)表:(單位:名)
男 | 女 | 總計 | ||||||
喜愛 | 40 | 60 | 100 | |||||
不喜愛 | 20 | 20 | 40 | |||||
總計 | 60 | 80 | 140 | |||||
p(k2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |||
k0 | 2.705 | 3.841 | 5.024 | 6.635 | 7.879 | |||
(Ⅰ)從這60名男觀眾中按對樂嘉是否喜愛采取分層抽樣,抽取一個容量為6的樣本,問樣本中喜愛與不喜愛的觀眾各有多少名?
(Ⅱ)根據(jù)以上列聯(lián)表,問能否在犯錯誤的概率不超過0.025的前提下認(rèn)為觀眾性別與喜愛樂嘉有關(guān)?(精確到0.001)
(Ⅲ)從(Ⅰ)中的6名男性觀眾中隨機(jī)選取兩名作跟蹤調(diào)查,求選到的兩名觀眾都喜愛樂嘉的概率.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在非零實數(shù)集上的函數(shù)滿足: ,且在區(qū)間上為遞增函數(shù).
(1)求、的值;
(2)求證: 是偶函數(shù);
(3)解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為R的函數(shù)是奇函數(shù)
(1)求的值
(2)判斷f(x)在上的單調(diào)性。(直接寫出答案,不用證明)
(3)若對于任意,不等式恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com