科目:高中數(shù)學(xué) 來源: 題型:
3 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(滿分14分)設(shè),在平面直角坐標系中,已知向量,向量,,動點的軌跡為E.
(1)求軌跡E的方程,并說明該方程所表示曲線的形狀;
(2)已知,證明:存在圓心在原點的圓,使得該圓的任意一條切線與軌跡E恒有兩個交點A,B,且(O為坐標原點),并求出該圓的方程;
(3)已知,設(shè)直線與圓C:(1<R<2)相切于A1,且與軌跡E只有一個公共點B1,當(dāng)R為何值時,|A1B1|取得最大值?并求最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年浙江省臺州中學(xué)高二上學(xué)期第一次統(tǒng)練試題理科數(shù)學(xué) 題型:解答題
(本題滿分10分) 在平面直角坐標系中,已知直線被圓[截得的弦長為
(Ⅰ)求圓的方程
(II)設(shè)圓和軸相交于,兩點,點為圓上不同于,的任意一點,直線,交軸于,兩點.當(dāng)點變化時,以為直徑的圓是否經(jīng)過圓內(nèi)一定點?請證明你的結(jié)論
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省“皖西七!备呷昙壜(lián)合考試理科數(shù)學(xué)試卷(解析版) 題型:解答題
在平面直角坐標系中,已知點和,圓是以為圓心,半徑為的圓,點是圓上任意一點,線段的垂直平分線和半徑所在的直線交于點.
(Ⅰ)當(dāng)點在圓上運動時,求點的軌跡方程;
(Ⅱ)已知,是曲線上的兩點,若曲線上存在點,滿足(為坐標原點),求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com