16.將一個氣球的體積變以原來的2倍,它的表面積變?yōu)樵瓉淼?\root{3}{4}$倍.

分析 利用球的體積、表面積公式,即可得出結(jié)論.

解答 解:一個氣球的體積變?yōu)樵瓉淼?倍,則半徑變?yōu)樵瓉淼?\root{3}{2}$倍,
∴表面積變?yōu)樵瓉淼?\root{3}{4}$倍,
故答案為:$\root{3}{4}$.

點評 本題是基礎題,考查球的體積、表面積的計算,考查計算能力,常考題型.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.若某程序框圖如圖所示,則該程序 運行后輸出i的值是( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知橢圓E的中心為原點坐標,離心率為$\frac{{\sqrt{3}}}{2}$,E的右焦點與拋物線C:y2=12x的焦點重合,則橢圓E的方程為$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.棱長為2的正方體ABCD-A1B1C1D1中,點M是CC1的中點,則三棱錐C1-BDM的體積是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.設函數(shù)f(x)=(x-a)6,若$\frac{f′(0)}{f(0)}$=-3,則f(x)的展開式中的x4系數(shù)為60.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.下列四個函數(shù)在(-∞,0)是增函數(shù)的為(  )
A.f(x)=x2+4B.f(x)=1-2xC.f(x)=-x2-x+1D.f(x)=2-$\frac{3}{x}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.C${\;}_{3n}^{38-n}$+C${\;}_{n+21}^{3n}$=( 。
A.466B.478C.512D.526

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=xlnx,g(x)=$\frac{1}{8}$x2-x.
(1)求f(x)的單調(diào)區(qū)間和極值點;
(2)是否存在實數(shù)m,使得函數(shù)h(x)=$\frac{3f(x)}{4x}$+m+g(x)有三個不同的零點?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.平面直角坐標系xOy中,已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,左、右焦點分別是P和Q,以P為圓心,以3為半徑的圓與以Q為圓心,以1為半徑的圓相交,交點在橢圓C1上.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)設橢圓C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}+2}$=1的左、右焦點分別為F1和F2,若動直線l:y=kx+m(k,m∈R)與橢圓C2有且僅有一個公共點,且F1M⊥l于M,F(xiàn)2N⊥l于N,設S為四邊形F1MNF2的面積,請求出S的最大值,并說明此時直線l的位置;若S無最大值,請說明理由.

查看答案和解析>>

同步練習冊答案