8.某高新技術(shù)公司要生產(chǎn)一批新研發(fā)的A款手機(jī)和B款手機(jī),生產(chǎn)一臺A款手機(jī)需要甲材料3kg,乙材料1kg,并且需要花費1天時間,生產(chǎn)一臺B款手機(jī)需要甲材料1kg,乙材料3kg,也需要1天時間,已知生產(chǎn)一臺A款手機(jī)利潤是1000元,生產(chǎn)一臺B款手機(jī)的利潤是2000元,公司目前有甲、乙材料各,則在300kg不超過120天的情況下,公司生產(chǎn)兩款手機(jī)的最大利潤是210000元.

分析 設(shè)生產(chǎn)A款手機(jī)x臺,B款手機(jī)y臺,利潤總和為z,得出約束條件表示的可行域,根據(jù)可行域得出目標(biāo)函數(shù)取得最大值時的最優(yōu)解.

解答 解:設(shè)生產(chǎn)A款手機(jī)x臺,B款手機(jī)y臺,利潤總和為z,
則$\left\{\begin{array}{l}{3x+y≤300}\\{x+3y≤300}\\{x+y≤120}\\{x≥0,y≥0}\end{array}\right.$,目標(biāo)函數(shù)z=1000x+2000y,
做出可行域如圖所示:
將z=1000x+2000變形,得y=-$\frac{1}{2}$x+$\frac{z}{2000}$,
由圖象可知,當(dāng)直線經(jīng)過點M時,z取得最大值.
解方程組$\left\{\begin{array}{l}{x+3y=300}\\{x+y=120}\end{array}\right.$,得M的坐標(biāo)為(30,90).
所以當(dāng)x=30,y=90時,zmax=1000×30+2000×90=210000.
故生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤之和的最大值為210000元.

點評 本題考查了簡單的線性規(guī)劃的應(yīng)用,做出約束條件,根據(jù)可行域判斷最優(yōu)解的位置是關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.銳角三角形ABC的三邊長a,b,c成等差數(shù)列,且a2+b2+c2=21,則實數(shù)b的取值范圍是(  )
A.$({\sqrt{6},\sqrt{7}}]$B.$({0,\sqrt{7}}]$C.$({\frac{{2\sqrt{42}}}{5},\sqrt{7}}]$D.(6,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.?dāng)?shù)列{an}中,若存在ak,使得“ak>ak-1且ak>ak+1”成立(其中k≥2,k∈N*),ak則稱為{an}的一個H值.現(xiàn)有如下數(shù)列:
①an=1-2n
②an=sinn
③an=$\frac{n-2}{{e}^{n-3}}$
④an=lnn-n
則存在H值的數(shù)列的序號為( 。
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.${log_2}8+{log_2}\frac{1}{2}$=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.以點(2,-1)為圓心且與直線3x-4y+5=0相切的圓的方程為( 。
A.(x-2)2+(y+1)2=3B.(x+2)2+(y-1)2=3C.(x-2)2+(y+1)2=9D.(x+2)2+(y-1)2=9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.甲、乙兩組數(shù)據(jù)的莖葉圖如圖所示,則平均數(shù)較小的一組數(shù)為甲.(選填“甲”或“乙”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在四棱錐P-ABCD中,底面ABCD為直角梯形,∠BAD=∠ADC=90°,DC=2AB=2AD,BC⊥PD,E,F(xiàn)分別是PB,BC的中點.
求證:(1)PC∥平面DEF;
         (2)平面PBC⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)直角坐標(biāo)系xoy平面內(nèi)的三點A(1,-2),B(a,-1),C(-b,0).其中a>0,b>0.若A,B,C三點共線.則$\frac{1}{a}$+$\frac{2}$的最小值為( 。
A.4B.6C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在鈍角△ABC中,角A,B,C所對的邊分別為a,b,c且b=atanB.
(Ⅰ)求A-B的值;
(Ⅱ)求cos2B-sinA的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案