7.函數(shù)y=($\frac{1}{2}$)|x+1|的值域是(0,1].

分析 由題意可知該函數(shù)為復(fù)合函數(shù),先分解成基本函數(shù),利用復(fù)合函數(shù)的性質(zhì)求解.

解答 解:由題意:函數(shù)y=($\frac{1}{2}$)|x+1|
令|x+1|=u,則函數(shù)u的值域?yàn)閇0,+∞),
可得:函數(shù)y=$(\frac{1}{2})^{u}$是單調(diào)減函數(shù),
當(dāng)u=0時(shí),函數(shù)y取得最大值為1,
所以函數(shù)y=($\frac{1}{2}$)|x+1|的值域(0,1].
故答案為:(0,1].

點(diǎn)評(píng) 本題考查了復(fù)合函數(shù)的值域的求法.先分解成基本函數(shù)求解.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.“cosα=0”是“sinα=1”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)Sn是首項(xiàng)不為零的等差數(shù)列{an}的前n項(xiàng)和,且S1,S2,S4成等比數(shù)列,則$\frac{a_2}{a_1}$等于1或3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,且a2=3,S4=16,則S9的值為81.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某城市有一直角梯形綠地ABCD,其中∠ABC=∠BAD=90°,AD=DC=2km,BC=1km.現(xiàn)過邊界CD上的點(diǎn)E處鋪設(shè)一條直的灌溉水管EF,將綠地分成面積相等的兩部分.

(1)如圖①,若E為CD的中點(diǎn),F(xiàn)在邊界AB上,求灌溉水管EF的長(zhǎng)度;
(2)如圖②,若F在邊界AD上,求灌溉水管EF的最短長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.等比數(shù)列{an}中,若a5=1,a8=8,則公比q=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)向量$\overrightarrow a$=(2,-6),$\overrightarrow b$=(-1,m),若$\overrightarrow a$∥$\overrightarrow b$,則實(shí)數(shù)m=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.2002年在北京召開的國(guó)際數(shù)學(xué)家大會(huì),會(huì)標(biāo)是以我國(guó)古代數(shù)學(xué)家趙爽的弦圖為基礎(chǔ)設(shè)計(jì)的.弦圖是由四個(gè)全等直角三角形與一個(gè)小正方形拼成的一個(gè)大正方形(如圖).如果小正方形的面積為1,大正方形的面積為25,直角三角形中較小的銳角為θ,那么sin2θ的值為( 。
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{23}{24}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若函數(shù)y=2+ln$\frac{1+x}{1-x}$,x∈[-$\frac{1}{2}$,$\frac{1}{2}}$]的最大值與最小值分別為M,m,則M+m=(  )
A.2B.-4C.0D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案