20.函數(shù)f(x)=$\left\{\begin{array}{l}{2,(x<1)}\\{{x}^{2}+ax,(x≥1)}\end{array}\right.$,若f(f(0))=4a,則實(shí)數(shù)a的值為(  )
A.0B.1C.2D.4

分析 利用分段函數(shù)列出方程,求解即可.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{2,(x<1)}\\{{x}^{2}+ax,(x≥1)}\end{array}\right.$,f(0)=2,
f(f(0))=4a,
可得f(2)=4a,
即22+2a=4a,解得a=2.
故選:C.

點(diǎn)評(píng) 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.斜率為2的直線經(jīng)過(3,5),(a,7)兩點(diǎn),則a的值是(  )
A.a=2B.a=-4C.a=4D.a=-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖是一容量為100的樣本的重量的頻率分布直方圖,則由圖可知,重量在區(qū)間[15,20]的樣本個(gè)數(shù)為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)的定義域?yàn)椋?,+∞),若y=$\frac{f(x)}{x}$在(0,+∞)上為增函數(shù),則稱f(x)為“一階比增函數(shù)”;若y=$\frac{f(x)}{{x}^{2}}$在(0,+∞)上為增函數(shù),則稱f(x)為“二階比增函數(shù)”.我們把所有“一階比增函數(shù)”組成的集合記為Ω1,所有“二階比增函數(shù)”組成的集合記為Ω2.已知函數(shù)f(x)=x3-2mx2-mx,若f(x)∈Ω1,且f(x)∉Ω2,實(shí)數(shù)m的取值范圍(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知圓O:x2+y2=9上到直線l:a(x+4)+by=0(a,b是實(shí)數(shù))的距 離為1的點(diǎn)有且僅有2個(gè),則直線l斜率的取值范圍是$(-∞,-\frac{{\sqrt{3}}}{3})∪(\frac{{\sqrt{3}}}{3},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.“a=2是函數(shù)f(x)=|ax-4|在區(qū)間(2,+∞)上單調(diào)遞增”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.定義在R上的函數(shù)f(x)滿足f(x)>1-f′(x),若f(0)=6,則不等式f(x)>1+$\frac{5}{e^x}$(e為自然對(duì)數(shù)的底數(shù))的解集為( 。
A.(0,+∞)B.(5,+∞)C.(-∞,0)∪(5,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若集合A={x|kx2-2x-1=0}的元素至多一個(gè),則實(shí)數(shù)k的取值集合為( 。
A.k≤-1B.k≤-1或者k=0C.(-∞,-1)∪{0}D.(-∞,-1]∩{0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.執(zhí)行如圖的程序框圖,如果輸入的a=2,b=5,那么輸出的n=(  )
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案