向量
a
=(
1
2
,
1
2
sinx+
3
2
cosx)
,
b
=(1,y)
,已知
a
b
,且有函數(shù)y=f(x).
(1)求函數(shù)y=f(x)的周期;
(2)已知銳角△ABC的三個內(nèi)角分別為A,B,C,若有f(A-
π
3
)=
3
,邊BC=
7
,sinB=
21
7
,求AC的長及△ABC的面積.
a
=(
1
2
,
1
2
sinx+
3
2
cosx),
b
=(1,y),
a
b
=
1
2
y-(
1
2
sinx+
3
2
cosx)=0,即y=f(x)=2sin(x+
π
3
),
(1)∵ω=1,∴函數(shù)f(x)的周期為T=2π;
(2)由f(A-
π
3
)=
3
得2sin(A-
π
3
+
π
3
)=
3
,即sinA=
3
2
,
∵△ABC是銳角三角形,
∴A=
π
3
,
由正弦定理:
BC
sinA
=
AC
sinB
及條件BC=
7
,sinB=
21
7
,得AC=
BCsinB
sinA
=
7
×
21
7
3
2
=2,
又∵BC2=AB2+AC2-2AB•AC•cosA,即7=AB2+4-2•AB×2×
1
2

解得:AB=3,
∴S△ABC=
1
2
AB•AC•sinA=
3
3
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=cos(2x+
π
3
)
的圖象按向量
a
平移后所得的圖象關(guān)于x=
π
6
對稱,則向量
a
的坐標(biāo)可能為(  )
A、(-
π
12
,0)
B、(-
π
6
,0)
C、(
π
12
,0)
D、(
π
6
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(cosα,
1
2
)
的模為
2
2
,則cos2α=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosθ,  
1
2
)
的模為
2
2
,則cos2θ等于( 。
A、
2
-
3
2
B、-
1
4
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•湖北模擬)對于函數(shù)f(x)=|x-2k|(-1+2k<x≤1+2k,其中k可以取所有整數(shù))下列三種結(jié)論中正確的有
①②③
①②③
(只填你認(rèn)為正確結(jié)論的序號)
①使f(x)>
1
2
的x的取值集合為{x|
1
2
+2k<x<
3
2
+2k,k∈Z}
;
②函數(shù)f(x)的圖象是中心對稱圖形,點(diǎn)(-
1
2
+k,
1
2
)(k∈Z)
是其對稱中心;
③函數(shù)f(x)的圖象按向量
a
=(-
1
2
,-
1
2
)
平移得到一個奇函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知空間向量
a
=(a1,a2,a3),
b
=(b1,b2,b3),定義兩個空間向量
a
b
之間的距離為d(
a
,
b
)=
3
i=1
|bi-ai|.
(1)若
a
=(1,2,3),
b
=(4,1,1),
c
=(
11
2
,
1
2
,0),證明:d(
a
,
b
)+d(
b
,
c
)=d(
a
,
c

(2)已知
c
=(c1,c2,c3
    ①證明:若?λ>0,使
b
-
a
=λ(
c
-
b
),則d(
a
,
b
)+d(
a
,
c
)=d(
a
,
c
).
    ②若d(
a
,
b
)+d(
b
c
)=d(
a
,
c
),是否一定?λ>0,使
b
-
a
=λ(
c
-
b
)?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案