分析 (1)利用導數(shù)直接求單調區(qū)間;
(2)若要命題成立,只需當x∈(0,2]時,f(x)max<g(x)max.分別求出最大值即可.
解答 解:(1)f′(x)=ax-(2a+1)+$\frac{2}{x}$,…(2分)
所以a=$\frac{2}{3}$時,f′(x)=$\frac{(2x-3)(x-2)}{3x}$,
其單調遞增區(qū)間為(0,$\frac{3}{2}$),(2,+∞),單調遞減區(qū)間為($\frac{3}{2},2))$. …(5分)
(2)若要命題成立,只需當x∈(0,2]時,f(x)max<g(x)max.
由g′(x)=(x2-2)ex可知,當x∈(0,2]時,g(x)在區(qū)間(0,$\sqrt{2}$)上單調遞減,在區(qū)間($\sqrt{2}$,2]上單調遞增,
g(0)=g(2)=0,故g(x)max=0,…(7分)
所以只需f(x)max<0.
對函數(shù)f(x)來說,f′(x)=ax-(2a+1)+$\frac{2}{x}$=$\frac{(ax-1)(x-2)}{x}$
當a≤0時,由x∈(0,2],f′(x)≥0,函數(shù)f(x)在區(qū)間(0,2]上單調遞增,
f(x)max=f(2)=2ln2-2a-2<0,故ln2-1<a≤0
當0<a≤2時,$\frac{1}{a}≥2$,由x∈(0,2),ax-1≥0,故f′(x)≥0,
函數(shù)f(x)在區(qū)間(0,2)上單調遞增,
f(x)max=f(2)=2ln2-2a-2<0,a>ln2-1
故0<a≤2滿足題意
當a>$\frac{1}{2}$時,$0<\frac{1}{a}<2$,函數(shù)f(x)在區(qū)間(0,$\frac{1}{a}$)上單調遞增,在區(qū)間($\frac{1}{a},2)$上單調遞減,
f(x)max=f($\frac{1}{a})$=-2lna-$\frac{1}{2a}$-2.
若a≥1時,顯然小于0,滿足題意;
若$\frac{1}{2}<a<1$時,可令h(a)=-2lna-$\frac{1}{2a}$-2,$h′(a)=\frac{1-4a}{2{a}^{2}}$,
可知該函數(shù)在$\frac{1}{2}<a<1$時單調遞減,
$h(a)<h(\frac{1}{2})=2ln2-3<0$,滿足題意,所以a>$\frac{1}{2}$滿足題意.
綜上所述:實數(shù)a的取值范圍是(ln2-1,+∞) …(14分)
點評 本題考查了函數(shù)的單調性及存在、任意的處理方法,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{80}{\begin{array}{l}3\end{array}}$ | B. | $\frac{40}{\begin{array}{l}3\end{array}}$ | C. | 80 | D. | 40 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com