【題目】已知拋物線C:x2=4y的焦點為F,過點F且斜率為1的直線與拋物線相交于M、N兩點,設(shè)直線l是拋物線C的切線,且l∥MN,P為l上一點,則 的最小值為

【答案】﹣14
【解析】解:拋物線的焦點F(0,1),∴直線MN的方程為:y=x+1.聯(lián)立方程組 得M(2+2 ,3+2 ),N(2﹣2 ,3﹣2 ).
設(shè)直線l的方程為y=x+b,代入x2=4y得x2﹣4x﹣4b=0,
∵直線l是拋物線C的切線,∴方程只有一解.
∴△=16+16b=0,解得b=﹣1.即l方程為:y=x﹣1.
設(shè)P(x,x﹣1), =(2+2 ﹣x,4+2 ﹣x), =(2﹣2 ﹣x,4﹣2 ﹣x).
=[(2﹣x)+2 ][(2﹣x)﹣2 ]+[(4﹣x)+2 ][(4﹣x)﹣2 ]=2x2﹣12x+4=2(x﹣3)2﹣14.
∴當(dāng)x=3時, 取得最小值﹣14.
所以答案是:﹣14.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=( x , 函數(shù)g(x)=log x.
(1)若g(ax2+2x+1)的定義域為R,求實數(shù)a的取值范圍;
(2)當(dāng)x∈[( t+1 , ( t]時,求函數(shù)y=[g(x)]2﹣2g(x)+2的最小值h(t);
(3)是否存在非負(fù)實數(shù)m,n,使得函數(shù)y=log f(x2)的定義域為[m,n],值域為[2m,2n],若存在,求出m,n的值;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)= ,x∈R.
(1)求證:對一切實數(shù)x,f(x)=f(1﹣x)恒為定值.
(2)計算:f(﹣6)+f(﹣5)+f(﹣4)+f(﹣3)+…+f(0)+…+f(6)+f(7).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是(
A.在△ABC中,角A,B,C的對邊分別是a,b,c,則a>b是cos A<cos B的充要條件
B.命題p:對任意的x∈R,x2+x+1>0,則¬p:對任意的x∈R,x2+x+1≤0
C.已知p: >0,則¬p: ≤0
D.存在實數(shù)x∈R,使sin x+cos x= 成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+),其中為實數(shù),若 對x∈R恒成立,且 ,則f(x)的單調(diào)遞增區(qū)間是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)y1=a3x+1 , y2=a2x(a>0,a≠1),確定x為何值時,有:
(1)y1=y2 ;
(2)y1>y2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線x2 =1,過點P(2,1)能否作一條直線l,與雙曲線交于A,B兩點,且點P是線段AB的中點?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)O是平行四邊形ABCD的兩條對角線AC,BD的交點,下列向量組:
;② ;
;④
其中可作為這個平行四邊形所在平面的一組基底的是( ).

A.①②
B.③④
C.①③
D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為貫徹落實教育部6部門《關(guān)于加快發(fā)展青少年校園足球的實施意見》,全面提高我市中學(xué)生的體質(zhì)健康水平,培養(yǎng)拼搏意識和團(tuán)隊精神,普及足球知識和技能,市教體局決定舉行春季校園足球聯(lián)賽.為迎接此次聯(lián)賽,甲中學(xué)選拔了20名學(xué)生組成集訓(xùn)隊,現(xiàn)統(tǒng)計了這20名學(xué)生的身高,記錄入如表:(設(shè)ξ為隨機(jī)變量)

身高(cm)

168

174

175

176

178

182

185

188

人數(shù)

1

2

4

3

5

1

3

1


(1)請計算這20名學(xué)生的身高的中位數(shù)、眾數(shù),并補充完成下面的莖葉圖;
(2)身高為185cm和188cm的四名學(xué)生分別記為A,B,C,D,現(xiàn)從這四名學(xué)生選2名擔(dān)任正副門將,請利用列舉法列出所有可能情況,并求學(xué)生A入選門將的概率.

查看答案和解析>>

同步練習(xí)冊答案