(1)求圓心在軸上,且與直線相切于點的圓的方程;
(2)已知圓過點,且與圓關(guān)于直線對稱,求圓的方程.

(1)(2)

解析試題分析:(1)根據(jù)題意可設(shè)圓心,所以圓心和切點的連線與直線垂直,根據(jù)斜率相乘等于,可求出圓心坐標(biāo),圓心與切點間的距離為半徑,即可求出圓的標(biāo)準(zhǔn)方程。(2)兩圓關(guān)于直線對稱即圓心關(guān)于直線對稱,半徑不變。即兩圓心的連線被直線垂直平分,則可求出圓的圓心坐標(biāo),根據(jù)兩點間距離求半徑。
試題解析:解:(1)根據(jù)題意可設(shè)圓心,則,即圓心為,半徑,則所求圓的方程為.          6分
(2)設(shè)圓心, 
在圓上所以圓C的方程為.        12分
考點:1求圓的方程;2點關(guān)于直線的對稱點。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

求半徑為4,與圓x2+y2-4x-2y-4=0相切,且和直線y=0相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C經(jīng)過點A(-2,0),B(0,2),且圓心C在直線yx上,又直線lykx+1與圓C相交于P、Q兩點.
(1)求圓C的方程;
(2)若·=-2,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知以點C為圓心的圓與x軸交于點O,A,與y軸交于點O,B,其中O為坐標(biāo)原點.
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y=-2x+4與圓C交于點M,N,若|OM|=|ON|,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C上的動點P()滿足到定點A(-1,0)的距離與到定點B(1,0)距離之比為
(1)求曲線C的方程。
(2)過點M(1,2)的直線與曲線C交于兩點M、N,若|MN|=4,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓.
(1)若直線過點,且與圓相切,求直線的方程;
(2)若圓的半徑為4,圓心在直線上,且與圓內(nèi)切,求圓 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,且經(jīng)過點,圓的直徑為的長軸.如圖,是橢圓短軸端點,動直線過點且與圓交于兩點,垂直于交橢圓于點.

(1)求橢圓的方程;
(2)求 面積的最大值,并求此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知關(guān)于的方程:,R.
(Ⅰ)若方程表示圓,求的取值范圍;
(Ⅱ)若圓與直線相交于兩點,且=,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓的圓心在點, 點,求;
(1)過點的圓的切線方程;
(2)點是坐標(biāo)原點,連結(jié),,求的面積

查看答案和解析>>

同步練習(xí)冊答案