函數(shù)f(x)的定義域為R,f(-1)=2,對任意x∈R,f′(x)>2,則f(x)>2x+4的解集為________.

(-1,+∞)
解:設(shè)F(x)=f(x)-(2x+4),
則F(-1)=f(-1)-(-2+4)=2-2=0,
又對任意x∈R,f′(x)>2,所以F′(x)=f′(x)-2>0,
即F(x)在R上單調(diào)遞增,
則F(x)>0的解集為(-1,+∞),
即f(x)>2x+4的解集為(-1,+∞).
故答案為:(-1,+∞)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列說法:
(1)函數(shù)y=
-2x 3
與y=x
-2x
是同一函數(shù)
;
(2)f(x)=x+
2
x
,(x∈(0,1))的值域為(3,+∞)
;
(3)若函數(shù)f(x)的定義域為[0,2],則函數(shù)g(x)=
f(2x)
x-2
的定義域為[0,2)

(4)集合{x∈N|x=
6
a
,a∈N *}
中只有四個元素;其中正確的是
(2)(4)
(2)(4)
(只寫番號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為[-1,2],則函數(shù)f(
x
)
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x+1)定義域是[-1,1],則函數(shù)f(x)的定義域是(    )

A.[-1,1]          B.R              C.[0,2]           D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=的定義域為R,則k的取值范圍為___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年寧夏高一上學(xué)期期中考試數(shù)學(xué)卷 題型:選擇題

已知函數(shù)f(x)=的定義域是一切實數(shù),則m的取值范圍是(   )

A.0<m≤4        B.0≤m≤1         C.m≥4          D.0≤m≤4

 

查看答案和解析>>

同步練習(xí)冊答案