【題目】已知橢圓的焦點為,,離心率為,點P為橢圓C上一動點,且的面積最大值為,O為坐標原點.

(1)求橢圓C的方程;

(2)設點,為橢圓C上的兩個動點,當為多少時,點O到直線MN的距離為定值.

【答案】1;(2)當=0時,點O到直線MN的距離為定值.

【解析】

1的面積最大時,是短軸端點,由此可得,再由離心率及可得,從而得橢圓方程;

2)在直線斜率存在時,設其方程為,現(xiàn)橢圓方程聯(lián)立消元()后應用韋達定理得,注意,一是計算,二是計算原點到直線的距離,兩者比較可得結(jié)論.

1)因為在橢圓上,當是短軸端點時,軸距離最大,此時面積最大,所以,由,解得,

所以橢圓方程為

2)在時,設直線方程為,原點到此直線的距離為,即,

,得,

,,

所以,,

,

所以當時,,,為常數(shù).

,則,,,,

綜上所述,當=0時,點O到直線MN的距離為定值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】湖南省會城市長沙又稱星城,是楚文明和湖湘文化的發(fā)源地,是國家首批歷史文化名城.城內(nèi)既有岳麓山、橘子洲等人文景觀,又有岳麓書院、馬王堆漢墓等名勝古跡,每年都有大量游客來長沙參觀旅游.為合理配置旅游資源,管理部門對首次來岳麓山景區(qū)游覽的游客進行了問卷調(diào)查,據(jù)統(tǒng)計,其中的人計劃只游覽岳麓山,另外的人計劃既游覽岳麓山又參觀馬王堆.每位游客若只游覽岳麓山,則記1分;若既游覽岳麓山又參觀馬王堆,則記2.假設每位首次來岳麓山景區(qū)游覽的游客計劃是否參觀馬王堆相互獨立,視頻率為概率.

1)從游客中隨機抽取3人,記這3人的合計得分為,求的分布列和數(shù)學期望;

2)從游客中隨機抽取人(),記這人的合計得分恰為分的概率為,求;

3)從游客中隨機抽取若干人,記這些人的合計得分恰為分的概率為,隨著抽取人數(shù)的無限增加,是否趨近于某個常數(shù)?若是,求出這個常數(shù);若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形的邊長為為正三角形,平面平面,是線段的中點,是線段上的動點.

1)探究四點共面時,點位置,并證明;

2)當四點共面時,求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在多面體中,平面平面,且四邊形為正方形,且//,,,點,分別是,的中點.

1)求證:平面;

2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,隨著網(wǎng)絡的普及和智能手機的更新?lián)Q代,各種方便的相繼出世,其功能也是五花八門.某大學為了調(diào)查在校大學生使用的主要用途,隨機抽取了名大學生進行調(diào)查,各主要用途與對應人數(shù)的結(jié)果統(tǒng)計如圖所示,現(xiàn)有如下說法:

①可以估計使用主要聽音樂的大學生人數(shù)多于主要看社區(qū)、新聞、資訊的大學生人數(shù);

②可以估計不足的大學生使用主要玩游戲;

③可以估計使用主要找人聊天的大學生超過總數(shù)的.

其中正確的個數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,四邊形為直角梯形,,,,為線段上一點,滿足的中點,現(xiàn)將梯形沿折疊(如圖2),使平面平面.

1)求證:平面平面;

2)能否在線段上找到一點(端點除外)使得直線與平面所成角的正弦值為?若存在,試確定點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項等比數(shù)列{an}滿足a122a2a4a3,數(shù)列{bn}滿足bn1+2log2an

1)求數(shù)列{an}{bn}的通項公式;

2)令cnanbn,求數(shù)列{cn}的前n項和Sn

3)若λ0,且對所有的正整數(shù)n都有2kλ+2成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的各項均為正數(shù),記數(shù)列的前n項和為,數(shù)列的前n項和為,且.

1)求的值;

2)求數(shù)列的通項公式;

3)若,且成等比數(shù)列,求kt的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線上一點,F為焦點,面積為1.

1)求拋物線C的方程;

2)過點P引圓的兩條切線PAPB,切線PA、PB與拋物線C的另一個交點分別為A、B,求直線AB斜率的取值范圍.

查看答案和解析>>

同步練習冊答案