【題目】對于數(shù)列,定義變換”:將數(shù)列變換成數(shù)列,其中,且,這種變換記作.繼續(xù)對數(shù)列進(jìn)行變換,得到數(shù)列,依此類推,當(dāng)?shù)玫降臄?shù)列各項(xiàng)均為時(shí)變換結(jié)束.

(1)試問經(jīng)過不斷的變換能否結(jié)束?若能,請依次寫出經(jīng)過變換得到的各數(shù)列;若不能,說明理由;

(2)求經(jīng)過有限次變換后能夠結(jié)束的充要條件;

(3)證明:一定能經(jīng)過有限次變換后結(jié)束.

【答案】(1);(2);(3)證明見解析.

【解析】

(1)根據(jù)定義,可得不能結(jié)束,數(shù)列能結(jié)束,并可寫出數(shù)列;(2)經(jīng)過有限次變換后能夠結(jié)束的充要條件,先證明,則經(jīng)過一次變換,就得到數(shù)列,從而結(jié)束,再證明命題“若數(shù)列為常數(shù)列,為常數(shù)列”, 即可得解;(3)先證明引理:將數(shù)的最大項(xiàng)一定不大于數(shù)列的最大項(xiàng),其中

” ,再分類討論:第一類是沒有為的項(xiàng),或者為的項(xiàng)與最大項(xiàng)不相鄰,(規(guī)定首項(xiàng)與末項(xiàng)相鄰),此時(shí)由引理可知,,第二類是含有為的項(xiàng)且與最大項(xiàng)相鄰,此時(shí),證明第二類數(shù)列經(jīng)過有限次變換”,一定可以得到第一類數(shù)列.

(1)數(shù)列不能結(jié)束,各數(shù)列依次為;;;;;….從而以下重復(fù)出現(xiàn),不會(huì)出現(xiàn)所有項(xiàng)均為的情形.

數(shù)列能結(jié)束,各數(shù)列依次為;;

(2)解:經(jīng)過有限次變換后能夠結(jié)束的充要條件是

,則經(jīng)過一次變換就得到數(shù)列,從而結(jié)束.

當(dāng)數(shù)列經(jīng)過有限次變換后能夠結(jié)束時(shí),先證命題若數(shù)列為常數(shù)列,則為常數(shù)列”.

當(dāng)時(shí),數(shù)列

由數(shù)列為常數(shù)列得,解得,從而數(shù)列也為常數(shù)列.

其它情形同理,得證.

在數(shù)列經(jīng)過有限次變換后結(jié)束時(shí),得到數(shù)列(常數(shù)列),由以上命題,它變換之前的數(shù)列也為常數(shù)列,可知數(shù)列也為常數(shù)列.

所以,數(shù)列經(jīng)過有限次變換后能夠結(jié)束的充要條件是

(3)證明:先證明引理:數(shù)列的最大項(xiàng)一定不大于數(shù)列的最大項(xiàng),其中”.

證明:記數(shù)列中最大項(xiàng)為,則

,其中

因?yàn)?/span>所以,

,證畢.

現(xiàn)將數(shù)列分為兩類.

第一類是沒有為的項(xiàng),或者為的項(xiàng)與最大項(xiàng)不相鄰(規(guī)定首項(xiàng)與末項(xiàng)相鄰),此時(shí)由引理可知,

第二類是含有為的項(xiàng),且與最大項(xiàng)相鄰,此時(shí)

下面證明第二類數(shù)列經(jīng)過有限次變換,一定可以得到第一類數(shù)列.

不妨令數(shù)列的第一項(xiàng)為,第二項(xiàng)最大().(其它情形同理)

①當(dāng)數(shù)列中只有一項(xiàng)為時(shí),

(),則,此數(shù)列各項(xiàng)均不為或含有項(xiàng)但與最大項(xiàng)不相鄰,為第一類數(shù)列;

,則此數(shù)列各項(xiàng)均不為或含有項(xiàng)但與最大項(xiàng)不相鄰,為第一類數(shù)列;

(),則,此數(shù)列各項(xiàng)均不為,為第一類數(shù)列;

,則;;,

此數(shù)列各項(xiàng)均不為,為第一類數(shù)列.

②當(dāng)數(shù)列中有兩項(xiàng)為時(shí),若(),則,此數(shù)列各項(xiàng)均不為,為第一類數(shù)列;

(),則,,此數(shù)列各項(xiàng)均不為或含有項(xiàng)但與最大項(xiàng)不相鄰,為第一類數(shù)列.

③當(dāng)數(shù)列中有三項(xiàng)為時(shí),只能是,則,

,,此數(shù)列各項(xiàng)均不為,為第一類數(shù)列.

總之,第二類數(shù)列至多經(jīng)過變換,就會(huì)得到第一類數(shù)列,即至多連續(xù)經(jīng)歷變換,數(shù)列的最大項(xiàng)又開始減少.

又因?yàn)楦鲾?shù)列的最大項(xiàng)是非負(fù)整數(shù),

故經(jīng)過有限次變換后,數(shù)列的最大項(xiàng)一定會(huì)為,此時(shí)數(shù)列的各項(xiàng)均為,從而結(jié)束.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的偶函數(shù)fx)滿足fe+x)=fex),且f0)=0,當(dāng)x∈(0,e]時(shí),fx)=lnx已知方程在區(qū)間[e,3e]上所有的實(shí)數(shù)根之和為3ea,將函數(shù)的圖象向右平移a個(gè)單位長度,得到函數(shù)hx)的圖象,,則h7)=_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),則函數(shù)的零點(diǎn)個(gè)數(shù)為( )(是自然對數(shù)的底數(shù))

A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國國際智能產(chǎn)業(yè)博覽會(huì)(智博會(huì))每年在重慶市舉辦一屆,每年參加服務(wù)的志愿者分“嘉賓”、“法醫(yī)”等若干小組,年底,來自重慶大學(xué)、西南大學(xué)、重慶醫(yī)科大學(xué)、西南政法大學(xué)的500名學(xué)生在重慶科技館多功能廳參加了“志愿者培訓(xùn)”,如圖是四所大學(xué)參加培訓(xùn)人數(shù)的不完整條形統(tǒng)計(jì)圖,現(xiàn)用分層抽樣的方法從中抽出20人作為2019年中國國際智博會(huì)服務(wù)的志愿者.

(1)分別求出從重慶大學(xué)、西南大學(xué)、重慶醫(yī)科大學(xué)、西南政法大學(xué)抽出的志愿者人數(shù);

(2)若“嘉賓”小組的2名志愿者只能從重慶醫(yī)科大學(xué)或西南政法大學(xué)抽出,求這2人分別來自不同大學(xué)的概率(結(jié)果用分?jǐn)?shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國國際智能產(chǎn)業(yè)博覽會(huì)(智博會(huì))每年在重慶市舉辦一屆,每年參加服務(wù)的志愿者分嘉賓法醫(yī)等若干小組.2018年底,來自重慶大學(xué)、西南大學(xué)、重慶醫(yī)科大學(xué)、西南政法大學(xué)的500名學(xué)生在重慶科技館多功能廳參加了志愿者培訓(xùn),如圖是四所大學(xué)參加培訓(xùn)人數(shù)的不完整條形統(tǒng)計(jì)圖,現(xiàn)用分層抽樣的方法從中抽出50人作為2019年中國國際智博會(huì)服務(wù)的志愿者.

1)若嘉賓小組需要2名志愿者,求這2人分別來自不同大學(xué)的概率(結(jié)果用分?jǐn)?shù)表示).

2)若法醫(yī)小組的3名志愿者只能從重慶醫(yī)科大學(xué)或西南政法大學(xué)抽出,用5表示抽出志愿者來自重慶醫(yī)科大學(xué)的人數(shù),求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn),,過點(diǎn)的直線與橢圓交于不同的兩點(diǎn).

1)求橢圓的方程;

2)求的取值范圍;

3)設(shè)直線和直線的斜率分別為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)對任意實(shí)數(shù),滿足:,且,,并且當(dāng)時(shí),.給出如下結(jié)論:①函數(shù)是偶函數(shù);②函數(shù)上單調(diào)遞增;③函數(shù)是以2為周期的周期函數(shù);④.其中正確的結(jié)論是(

A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市政府為減輕汽車尾氣對大氣的污染,保衛(wèi)藍(lán)天,鼓勵(lì)廣大市民使用電動(dòng)交通工具出行,決定為電動(dòng)車(含電動(dòng)自行車和電動(dòng)汽車)免費(fèi)提供電池檢測服務(wù).現(xiàn)從全市已掛牌照的電動(dòng)車中隨機(jī)抽取100輛委托專業(yè)機(jī)構(gòu)免費(fèi)為它們進(jìn)行電池性能檢測,電池性能分為需要更換、尚能使用、較好、良好四個(gè)等級,并分成電動(dòng)自行車和電動(dòng)汽車兩個(gè)群體分別進(jìn)行統(tǒng)計(jì),樣本分布如圖.

(1)采用分層抽樣的方法從電池性能較好的電動(dòng)車中隨機(jī)抽取9輛,再從這9輛中隨機(jī)抽取2輛,求至少有一輛為電動(dòng)汽車的概率;

(2)為進(jìn)一步提高市民對電動(dòng)車的使用熱情,市政府準(zhǔn)備為電動(dòng)車車主一次性發(fā)放補(bǔ)助,標(biāo)準(zhǔn)如下:①電動(dòng)自行車每輛補(bǔ)助300元;②電動(dòng)汽車每輛補(bǔ)助500元;③對電池需要更換的電動(dòng)車每輛額外補(bǔ)助400元.試求抽取的100輛電動(dòng)車執(zhí)行此方案的預(yù)算;并利用樣本估計(jì)總體,試估計(jì)市政府執(zhí)行此方案的預(yù)算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體是正三棱柱(底面是正三角形的直棱柱)沿平面切除一部分所得,其中平面為原正三棱柱的底面,,點(diǎn)D的中點(diǎn).

(1)求證:平面;

(2)求二面角的平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案