16.已知${\vec e_1}$,${\vec e_2}$是同一平面內(nèi)兩個單位向量,其夾角為60°,如果$\vec a$=2${\vec e_1}$+${\vec e_2}$,$\overrightarrow b$=-3${\vec e_1}$+2${\vec e_2}$.
(1)求$\vec a•\vec b$
(2)求$\vec a$與$\vec b$的夾角.

分析 (1)由已知$\vec a$=2${\vec e_1}$+${\vec e_2}$,$\overrightarrow b$=-3${\vec e_1}$+2${\vec e_2}$,直接展開$\vec a•\vec b$得答案;
(2)求出$|\overrightarrow{a}|$、$|\overrightarrow|$的值,結(jié)合(1)中求出的$\overrightarrow{a}•\overrightarrow$,代入數(shù)量積求夾角公式得答案.

解答 解:(1)由已知得$|\overrightarrow{{e}_{1}}|=|\overrightarrow{{e}_{2}}|=1$,cos<$\overrightarrow{{e}_{1}},\overrightarrow{{e}_{2}}$>=$\frac{1}{2}$.
∵$\vec a$=2${\vec e_1}$+${\vec e_2}$,$\overrightarrow b$=-3${\vec e_1}$+2${\vec e_2}$,
∴$\overrightarrow{a}•\overrightarrow$=(2${\vec e_1}$+${\vec e_2}$)•(-3${\vec e_1}$+2${\vec e_2}$)=-6${\overrightarrow{{e}_{1}}}^{2}+\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}+2{\overrightarrow{{e}_{2}}}^{2}$=-6+1×$1×\frac{1}{2}$+2=$-\frac{7}{2}$;
(2)$|\overrightarrow{a}|=\sqrt{(2\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}})^{2}}=\sqrt{4{\overrightarrow{{e}_{1}}}^{2}+4\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}+{\overrightarrow{{e}_{2}}}^{2}}$=$\sqrt{4+4×1×1×\frac{1}{2}+1}$=$\sqrt{7}$.
$|\overrightarrow|=\sqrt{(-3\overrightarrow{{e}_{1}}+2\overrightarrow{{e}_{2}})^{2}}=\sqrt{9{\overrightarrow{{e}_{1}}}^{2}-12\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}+4{\overrightarrow{{e}_{2}}}^{2}}$=$\sqrt{9-12×1×1×\frac{1}{2}+4}=\sqrt{7}$.
設(shè)$\vec a$與$\vec b$的夾角為θ(0≤θ≤180°),則cosθ=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|•|\overrightarrow|}$=$\frac{-\frac{7}{2}}{\sqrt{7}×\sqrt{7}}=-\frac{1}{2}$.
∴θ=120°.

點評 本題考查平面向量的數(shù)量積運算,考查由數(shù)量積求斜率的夾角,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.正三棱錐的底面邊長為2,三條側(cè)棱兩兩互相垂直,則此棱錐的體積為( 。
A.$\frac{{\sqrt{2}}}{3}$B.$\frac{2}{3}\sqrt{2}$C.$\sqrt{2}$D.$\frac{4}{3}\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某工廠的甲、乙兩個車間的110名工人進行了勞動技能大比拼,規(guī)定:技能成績大于或等于90分為優(yōu)秀,90分以下為非優(yōu)秀.統(tǒng)計成績后,得到如下的2×2列聯(lián)表,且已知在甲、乙兩個車間工人中隨機抽取1人為優(yōu)秀的概率為$\frac{3}{11}$
優(yōu)秀非優(yōu)秀合計
甲車間105060
乙車間203050
合計3080110
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99%的可靠性要求,能否認為“成績與車間有關(guān)系?”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)$y=\frac{x}{{{e^{|x|}}}}$的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.一個正方體的各頂點均在同一球的球面上,若該正方體的表面積為24,則該球的體積為4$\sqrt{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x∈N|0≤x≤4},則下列說法正確的是( 。
A.0∉AB.1⊆AC.$\sqrt{2}⊆A$D.3∈A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.5位同學(xué)站成一排照相,其中甲與乙必須相鄰,且甲不能站在兩端的排法總數(shù)為36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知$cos(x+\frac{π}{4})=\frac{7}{25}$,x∈(0,π),則sinx=$\frac{{17\sqrt{2}}}{50}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知向量|$\overrightarrow{a}$|=2,$\overrightarrow$與($\overrightarrow$-$\overrightarrow{a}$)的夾角為30°,則|$\overrightarrow$|最大值為4.

查看答案和解析>>

同步練習(xí)冊答案