【題目】已知橢圓C的方程是 =1(a>b>0),其右焦點(diǎn)F到橢圓C的其中三個(gè)頂點(diǎn)的距離按一定順序構(gòu)成以 為公差的等差數(shù)列,且該數(shù)列的三項(xiàng)之和等于6.
(1)求橢圓C的方程;
(2)若直線(xiàn)AB與橢圓C交于點(diǎn)A,B(A在第一象限),滿(mǎn)足2 ,當(dāng)△0AB面積最大時(shí),求直線(xiàn)AB的方程.

【答案】
(1)解:∵右焦點(diǎn)F到橢圓C的其中三個(gè)頂點(diǎn)的距離按一定順序構(gòu)成以 為公差的等差數(shù)列,

∴此三項(xiàng)分別為:a﹣c,a,a+c,且a=a﹣c+

可得:c= ,

又該數(shù)列的三項(xiàng)之和等于6,

∴3a=6,解得a=2,

∴b2=a2﹣c2=1.

∴橢圓C的方程為: +y2=1


(2)解:設(shè)直線(xiàn)AB的方程為:my=x+t,A(x1,y1),B(x2,y2).

聯(lián)立 ,化為:(4+m2)y2﹣2mty+t2﹣4=0,(*)

△>0,可得4+m2>t2

∴y1+y2= ,y1y2=

∵滿(mǎn)足2 ,

∴2y1+y2=0.

∴y1= ,y2=

=

∴8m2t2=(4﹣t2)(4+m2).

|y1﹣y2|= =

∴SOAB= |t|= ≤2× × =1,當(dāng)且僅當(dāng)4+m2=2t2時(shí)取等號(hào).

聯(lián)立8m2t2=(4﹣t2)(4+m2),4+m2=2t2

解得:t2= ,m2=

∴直線(xiàn)AB的方程為: y=x±


【解析】(1)由于右焦點(diǎn)F到橢圓C的其中三個(gè)頂點(diǎn)的距離按一定順序構(gòu)成以 為公差的等差數(shù)列,可得此三項(xiàng)分別為:a﹣c,a,a+c,且a=a﹣c+ ,
可得:c,又該數(shù)列的三項(xiàng)之和等于6,可得3a=6,b2=a2﹣c2 . 解出即可得出.(2)設(shè)直線(xiàn)AB的方程為:my=x+t,A(x1 , y1),B(x2 , y2).與橢圓方程聯(lián)立化為:(4+m2)y2﹣2mty+t2﹣4=0,△>0,利用根與系數(shù)的關(guān)系及其2 ,即2y1+y2=0.可得8m2t2=(4﹣t2)(4+m2).利用SOAB= |t|= 及其基本不等式的性質(zhì)可得:4+m2=2t2 . 聯(lián)立解出即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表是一位母親給兒子作的成長(zhǎng)記錄:

年齡/周歲

3

4

5

6

7

8

9

身高/cm

94.8

104.2

108.7

117.8

124.3

130.8

139.1

根據(jù)以上樣本數(shù)據(jù),她建立了身高 (cm)與年齡x(周歲)的線(xiàn)性回歸方程為 ,給出下列結(jié)論:
①y與x具有正的線(xiàn)性相關(guān)關(guān)系;
②回歸直線(xiàn)過(guò)樣本的中心點(diǎn)(42,117.1);
③兒子10歲時(shí)的身高是 cm;
④兒子年齡增加1周歲,身高約增加 cm.
其中,正確結(jié)論的個(gè)數(shù)是
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,AE⊥平面ABC,CD∥AE,F(xiàn)是BE的中點(diǎn),AC=BC=1,∠ACB=90°,AE=2CD=2.
證明DF⊥平面ABE;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的首項(xiàng)為a1=1,且 ,(n∈N*).
(1)求a2 , a3的值,并證明:a2n1<a2n+1<2;
(2)令bn=|a2n1﹣2|,Sn=b1+b2+…+bn . 證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正△ABC的邊長(zhǎng)為1, =x +y ,且0≤x,y≤1, ≤x+y≤ ,則動(dòng)點(diǎn)P所形成的平面區(qū)域的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于定義在R上的函數(shù)f(x),如果存在實(shí)數(shù)a,使得f(a+x)f(a﹣x)=1對(duì)任意實(shí)數(shù)x∈R恒成立,則稱(chēng)f(x)為關(guān)于a的“倒函數(shù)”.已知定義在R上的函數(shù)f(x)是關(guān)于0和1的“倒函數(shù)”,且當(dāng)x∈[0,1]時(shí),f(x)的取值范圍為[1,2],則當(dāng)x∈[1,2]時(shí),f(x)的取值范圍為 , 當(dāng)x∈[﹣2016,2016]時(shí),f(x)的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè){an}是等比數(shù)列,下列結(jié)論中正確的是(
A.若a1+a2>0,則a2+a3>0
B.若a1+a3<0,則a1+a2<0
C.若0<a1<a2 , 則2a2<a1+a3
D.若a1<0,則(a2﹣a1)(a2﹣a3)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+ax+1,g(x)=ex(其中e為自然對(duì)數(shù)的底數(shù)). (Ⅰ)若a=1,求函數(shù)y=f(x)g(x)在區(qū)間[﹣2,0]上的最大值;
(Ⅱ)若a=﹣1,關(guān)于x的方程f(x)=kg(x)有且僅有一個(gè)根,求實(shí)數(shù)k的取值范圍;
(Ⅲ)若對(duì)任意的x1 , x2∈[0,2],x1≠x2 , 不等式|f(x1)﹣f(x2)|<|g(x1)﹣g(x2)|均成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+2x+alnx(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)t≥1時(shí),不等式f(2t﹣1)≥2f(t)﹣3恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案