已知函數(shù)滿足,對任意都有,且
(1)求函數(shù)的解析式;
(2)是否存在實數(shù),使函數(shù)上為減函數(shù)?若存在,求出實數(shù)的取值范圍;若不存在,說明理由.
(1);(2)存在實數(shù).

試題分析:(1)根據(jù) 求得;
根據(jù)對任意,有,確定圖像的對稱軸為直線,求得;
利用對任意都有,轉(zhuǎn)化成對任意成立,解得.
(2)化簡函數(shù) ,其定義域為,
,利用復合函數(shù)的單調(diào)性,得到求解,得,肯定存在性.
試題解析:
(1)由 ∴      1分
又對任意,有
圖像的對稱軸為直線,則,∴       3分
又對任意都有,
對任意成立,
,故                                  6分
                                              7分
(2)由(1)知 ,其定義域為     8分

要使函數(shù)上為減函數(shù),
只需函數(shù)上為增函數(shù),               11分
由指數(shù)函數(shù)的單調(diào)性,有,解得           13分
故存在實數(shù),當時,函數(shù)上為減函數(shù)      14分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)集合
(1)若求函數(shù)的解析式;
(2)若,且在區(qū)間上的最大值、最小值分別為,記,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設f(x)=x2x+13,實數(shù)a滿足|xa|<1,求證:|f(x)f(a)|<2(|a|+1).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若不等式(mx-1)[3m 2-( x + 1)m-1]≥0對任意恒成立,則實數(shù)x的值為    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)的最大值等于     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)),若的定義域和值域均是,則實數(shù)= 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

對于任意實數(shù)x,不等式恒成立,則實數(shù)a的取值范圍是         .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù)的定義域為,值域為,則m的取值范圍是(  )
A.   B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

,若,
(1)若,求的取值范圍;
(2)判斷方程內(nèi)實根的個數(shù).

查看答案和解析>>

同步練習冊答案