分析 由題意可得f′(x)≤0在x∈(1,2)上恒成立,即x2-2ax-a≤0成立,令g(x)=x2-2ax-a,得到關(guān)于a的不等式組,即可得出結(jié)論.
解答 解:f′(x)=x-2a-$\frac{a}{x}$,
∴f′(x)≤0在x∈(1,2)上恒成立,
即x-2a-$\frac{a}{x}$≤0,在x∈(1,2)上恒成立,
即x2-2ax-a≤0,
令g(x)=x2-2ax-a,則$\left\{\begin{array}{l}{g(1)≤0}\\{g(2)≤0}\end{array}\right.$,
即$\left\{\begin{array}{l}{1-3a≤0}\\{4-5a≤0}\end{array}\right.$,解得a≥$\frac{4}{5}$,
故答案為:[$\frac{4}{5}$,+∞).
點評 本題考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性知識及轉(zhuǎn)化劃歸思想的運用能力,屬中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6$\sqrt{3}$π | B. | 8$\sqrt{3}$π | C. | 14π | D. | 16π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,0] | B. | [1,9] | C. | [-1,3] | D. | [-2,9] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 0 | C. | 15 | D. | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com