分析 令h(x)=f(x)-g(x),可得|MN|=|h(x)|,結(jié)合二次函數(shù)的圖象和性質(zhì),可得|MN|的最大值.
解答 解:令h(x)=f(x)-g(x)=sinx-(2cos2x-1)=2sin2x+sinx-1=2(sinx+$\frac{1}{4}$)2-$\frac{9}{8}$,
則|MN|=|h(x)|,
當(dāng)sinx=-$\frac{1}{4}$時,h(x)取最小值-$\frac{9}{8}$,
當(dāng)sinx=1時,h(x)取最大值2,
故|h(x)|∈[0,2],
即|MN|的最大值為2,
故答案為:2.
點評 本題考查的知識點是函數(shù)的最值及其幾何意義,轉(zhuǎn)化思想,二次函數(shù)的圖象和性質(zhì),二倍角公式等知識點,難度中檔.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 有最小值$\frac{1}{2}$,無最大值 | B. | 有最大值$\frac{1}{2}$,無最小值 | ||
C. | 有最小值$\frac{1}{2}$,有最大值2 | D. | 無最大值,也無最小值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若l∥α,l∥β,則 α∥β | B. | 若 l⊥α,l⊥β,則 α∥β | ||
C. | 若l⊥α,l∥β,則 α∥β | D. | 若 α⊥β,l∥α,則 l⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com