直線L的斜率k=-tana ,,則直線l的傾斜角是

[  ]

A.a
B.
C.-a
D.a -2
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,兩條過原點O的直線l1,l2分別與x軸、y軸成30°的角,已知線段PQ的長度為2,且點P(x1,y1)在直線l1上運動,點Q(x2,y2)在直線l2上運動.
(Ⅰ)求動點M(x1,x2)的軌跡C的方程;
(Ⅱ)設過定點T(0,2)的直線l與(Ⅰ)中的軌跡C交于不同的兩點A、B,且∠AOB為銳角,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知以點C (t,
2
t
)(t∈R),t≠0)為圓心的圓與x軸交于點O,A,與y軸交于點O,B,其中O為坐標原點.
(1)求證:△OAB的面積為定值.
(2)設直線y=-2x+4與圓C交于點M,N若|OM|=|ON|,求圓C的方程.
(3)若t>0,當圓C的半徑最小且時,圓C上至少有三個不同的點到直線l:y-
2
=k(x-3-
2
)
的距離為
1
2
,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,點A(1,0).點R在y軸上運動,T在x軸上,N為動點,且
RT
RA
=0,
RN
+
RT
=0,
(1)設動點N的軌跡為曲線C,求曲線C的方程;
(2)過點B(-2,0)的直線l與曲線C交于點P、Q,若在曲線C上存在點M,使得△MPQ為以PQ為斜邊的直角三角形,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線l:x+ty+t=0與連接A(-
3
,2),B(2,1)
的線段總有公共點,則直線l的斜率k的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆江西省高二下學期第一次段考理科數(shù)學試卷 題型:解答題

已知以點C (t, )(tR),t≠0)為圓心的圓與x軸交于點OA,與y軸交于點OB,其中O為坐標原點.

(1)求證:△OAB的面積為定值;

(2)設直線y= –2x+4與圓C交于點M,N若|OM|=|ON|,求圓C的方程.

(3)若t>0,當圓C的半徑最小時,圓C上至少有三個不同的點到直線ly的距離為,求直線l的斜率k的取值范圍.

 

查看答案和解析>>

同步練習冊答案