(2012•安徽模擬)已知函數(shù)f(x)=
2x-1
1+2x
(a∈R)

(I)若a=2,且f(x)=-
3
2
-2
2
,求x的值;
(II)若f(x)為奇函數(shù),求a的值;
(III)當a=5時,函數(shù)f(x)的圖象是否存在對稱中心,若存在,求其對稱中心;若不存在,請說明理由.
分析:(I)把a=2代入方程f(x)=-
3
2
-2
2
,再將其轉化為指數(shù)方程,根據(jù)指數(shù)函數(shù)的性質解指數(shù)方程即可.
(II)根據(jù)題意求出函數(shù)的定義域是R,再由f(x)=-f(-x)列出方程,整理后利用對應項的系數(shù)相等,求出a的值.
(III)假設存在對稱中心,設其坐標為(h,k),則對任意x∈R,有f(h+x)+f(h-x)=2k恒成立,將函數(shù)的解析式代入其中化簡求出h,k的值,因而滿足條件的實數(shù)h,k存在,即存在對稱中心.
解答:解:(I)若a=2,則f(x)=
2x-1
1+2x
=
2×(2x+1)-3
1+2x
=2-
3
1+2x
≥2-
3
1
=-1,
由于-
3
2
-2
2
<-1
,故方程由f(x)=
2x-1
1+2x
=-
3
2
-2
2
無實數(shù)解.
(II)由題意知,函數(shù)的定義域是R,
∵f(x)為奇函數(shù),∴f(x)=-f(-x),
2x-1
1+2x
=-
2-x-1
1+2-x
,即
2x-1
1+2x
=-
a-2x
1+2x
,
解得a=1.
(III)當a=5時,f(x)=
2x-1
1+2x

假設函數(shù)f(x)的圖象是否存在對稱中心,設其坐標為(h,k),
則對任意x∈R,有f(h+x)+f(h-x)=2k恒成立,
2x+h-1
1+2x+h
+
2h-x-1
1+2h-x
=2k
,
整理得,
4-2k=0
(10-2k)×22h-2-2k=0
,
解得
h=0
k=2
,
當a=5時,函數(shù)f(x)的圖象存在對稱中心,其對稱中心為(0,2).
點評:本題的考點是利用函數(shù)奇偶性求值,即利用奇(偶)函數(shù)的定義列出方程,化簡后由對應項的系數(shù)相等求出參數(shù)的值,以及對稱性問題的處理方法,注意題目中所應用的函數(shù)的思想,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)在復平面內,復數(shù)z=
1+i
i-2
對應的點位于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)定義在R上的奇函數(shù)f(x)滿足:x≤0時f(x)=ax+b(a>0且a≠1),f(1)=
1
2
,則f(2)=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)(理)若變量x,y滿足約束條件
x+y-3≤0
x-y+1≥0
y≥1
,則z=|y-2x|的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)下列說法不正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)已知f(x)=2
3
sinx+
sin2x
sinx

(1)求f(x)的最大值,及當取最大值時x的取值集合.
(2)在三角形ABC中,a,b,c分別是角A,B,C所對的邊,對定義域內任意x,有f(x)≤f(A),若a=
3
,求
AB
AC
的最大值.

查看答案和解析>>

同步練習冊答案