若實(shí)數(shù)x,滿足不等式組,則z=|x|+2的最大值是( )
A.10 | B.11 | C.13 | D.14 |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了提高產(chǎn)品的年產(chǎn)量,某企業(yè)擬在2013年進(jìn)行技術(shù)改革.經(jīng)調(diào)查測算,產(chǎn)品當(dāng)年的產(chǎn)量萬件與投入技術(shù)改革費(fèi)用萬元()滿足(為常數(shù)).如果不搞技術(shù)改革,則該產(chǎn)品當(dāng)年的產(chǎn)量只能是1萬件.已知2013年生產(chǎn)該產(chǎn)品的固定收入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元.由于市場行情較好,廠家生產(chǎn)的產(chǎn)品均能銷售出去.廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品生產(chǎn)成本的倍(生產(chǎn)成本包括固定投入和再投入兩部分資金).
(Ⅰ)試確定的值,并將2013年該產(chǎn)品的利潤萬元表示為技術(shù)改革費(fèi)用萬元的函數(shù)(利潤=銷售金額―生產(chǎn)成本―技術(shù)改革費(fèi)用);
(Ⅱ)該企業(yè)2013年的技術(shù)改革費(fèi)用投入多少萬元時,廠家的利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知點(diǎn)P(x,y)在不等式組表示的平面區(qū)域上運(yùn)動,則x-y的取值范圍是( ).
A.[-2,-1] | B.[-2,1] | C.[-1,2] | D.[1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
若點(diǎn)(x, y)位于曲線y =" |x|" 與y = 2所圍成的封閉區(qū)域, 則2x-y的最小值為( )
A.-2 | B.-6 | C.0 | D.2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸、B原料2噸;生產(chǎn)每噸乙產(chǎn)品要用A原料1噸、B原料3噸.銷售每噸甲產(chǎn)品可獲得利潤5萬元、每噸乙產(chǎn)品可獲得利潤3萬元,該企業(yè)在一個生產(chǎn)周期內(nèi)消耗A原料不超過13噸、B原料不超過18噸,那么該企業(yè)可獲得的最大利潤是( )
A.12萬元 | B.20萬元 | C.25萬元 | D.27萬元 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=,x∈[1,+∞).
(1)當(dāng)a=4時,求函數(shù)f(x)的最小值;
(2)若對任意x∈[1,+∞),f(x)>0恒成立,試求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com